Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsymrels4 Structured version   Visualization version   GIF version

Theorem elsymrels4 36406
Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.)
Assertion
Ref Expression
elsymrels4 (𝑅 ∈ SymRels ↔ (𝑅 = 𝑅𝑅 ∈ Rels ))

Proof of Theorem elsymrels4
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfsymrels4 36398 . 2 SymRels = {𝑟 ∈ Rels ∣ 𝑟 = 𝑟}
2 cnveq 5742 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
3 id 22 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
42, 3eqeq12d 2753 . 2 (𝑟 = 𝑅 → (𝑟 = 𝑟𝑅 = 𝑅))
51, 4rabeqel 36131 1 (𝑅 ∈ SymRels ↔ (𝑅 = 𝑅𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2110  ccnv 5550   Rels crels 36072   SymRels csymrels 36081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563  df-rels 36340  df-ssr 36353  df-syms 36393  df-symrels 36394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator