Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsymrels4 | Structured version Visualization version GIF version |
Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
Ref | Expression |
---|---|
elsymrels4 | ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 = 𝑅 ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsymrels4 36781 | . 2 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} | |
2 | cnveq 5803 | . . 3 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
3 | id 22 | . . 3 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
4 | 2, 3 | eqeq12d 2753 | . 2 ⊢ (𝑟 = 𝑅 → (◡𝑟 = 𝑟 ↔ ◡𝑅 = 𝑅)) |
5 | 1, 4 | rabeqel 36486 | 1 ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 = 𝑅 ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ◡ccnv 5607 Rels crels 36407 SymRels csymrels 36416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-xp 5614 df-rel 5615 df-cnv 5616 df-dm 5618 df-rn 5619 df-res 5620 df-rels 36719 df-ssr 36732 df-syms 36776 df-symrels 36777 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |