Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsymrels4 Structured version   Visualization version   GIF version

Theorem elsymrels4 36789
Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.)
Assertion
Ref Expression
elsymrels4 (𝑅 ∈ SymRels ↔ (𝑅 = 𝑅𝑅 ∈ Rels ))

Proof of Theorem elsymrels4
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfsymrels4 36781 . 2 SymRels = {𝑟 ∈ Rels ∣ 𝑟 = 𝑟}
2 cnveq 5803 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
3 id 22 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
42, 3eqeq12d 2753 . 2 (𝑟 = 𝑅 → (𝑟 = 𝑟𝑅 = 𝑅))
51, 4rabeqel 36486 1 (𝑅 ∈ SymRels ↔ (𝑅 = 𝑅𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  ccnv 5607   Rels crels 36407   SymRels csymrels 36416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088  df-opab 5150  df-xp 5614  df-rel 5615  df-cnv 5616  df-dm 5618  df-rn 5619  df-res 5620  df-rels 36719  df-ssr 36732  df-syms 36776  df-symrels 36777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator