| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsymrels4 | Structured version Visualization version GIF version | ||
| Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| Ref | Expression |
|---|---|
| elsymrels4 | ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 = 𝑅 ∧ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsymrels4 38545 | . 2 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} | |
| 2 | cnveq 5840 | . . 3 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
| 3 | id 22 | . . 3 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 4 | 2, 3 | eqeq12d 2746 | . 2 ⊢ (𝑟 = 𝑅 → (◡𝑟 = 𝑟 ↔ ◡𝑅 = 𝑅)) |
| 5 | 1, 4 | rabeqel 38250 | 1 ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 = 𝑅 ∧ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ◡ccnv 5640 Rels crels 38178 SymRels csymrels 38187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-rels 38483 df-ssr 38496 df-syms 38540 df-symrels 38541 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |