Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvrefrels2 Structured version   Visualization version   GIF version

Theorem elcnvrefrels2 35322
Description: Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 25-Jul-2019.)
Assertion
Ref Expression
elcnvrefrels2 (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ))

Proof of Theorem elcnvrefrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfcnvrefrels2 35318 . 2 CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))}
2 id 22 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
3 dmeq 5665 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
4 rneq 5695 . . . . 5 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
53, 4xpeq12d 5481 . . . 4 (𝑟 = 𝑅 → (dom 𝑟 × ran 𝑟) = (dom 𝑅 × ran 𝑅))
65ineq2d 4115 . . 3 (𝑟 = 𝑅 → ( I ∩ (dom 𝑟 × ran 𝑟)) = ( I ∩ (dom 𝑅 × ran 𝑅)))
72, 6sseq12d 3927 . 2 (𝑟 = 𝑅 → (𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅))))
81, 7rabeqel 35069 1 (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1525  wcel 2083  cin 3864  wss 3865   I cid 5354   × cxp 5448  dom cdm 5450  ran crn 5451   Rels crels 35008   CnvRefRels ccnvrefrels 35014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-xp 5456  df-rel 5457  df-cnv 5458  df-dm 5460  df-rn 5461  df-res 5462  df-rels 35277  df-ssr 35290  df-cnvrefs 35315  df-cnvrefrels 35316
This theorem is referenced by:  elcnvrefrelsrel  35324  cosselcnvrefrels2  35326
  Copyright terms: Public domain W3C validator