Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvrefrels2 | Structured version Visualization version GIF version |
Description: Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 25-Jul-2019.) |
Ref | Expression |
---|---|
elcnvrefrels2 | ⊢ (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnvrefrels2 36240 | . 2 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} | |
2 | id 22 | . . 3 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
3 | dmeq 5749 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
4 | rneq 5782 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) | |
5 | 3, 4 | xpeq12d 5559 | . . . 4 ⊢ (𝑟 = 𝑅 → (dom 𝑟 × ran 𝑟) = (dom 𝑅 × ran 𝑅)) |
6 | 5 | ineq2d 4119 | . . 3 ⊢ (𝑟 = 𝑅 → ( I ∩ (dom 𝑟 × ran 𝑟)) = ( I ∩ (dom 𝑅 × ran 𝑅))) |
7 | 2, 6 | sseq12d 3927 | . 2 ⊢ (𝑟 = 𝑅 → (𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)))) |
8 | 1, 7 | rabeqel 35990 | 1 ⊢ (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∩ cin 3859 ⊆ wss 3860 I cid 5433 × cxp 5526 dom cdm 5528 ran crn 5529 Rels crels 35929 CnvRefRels ccnvrefrels 35935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-xp 5534 df-rel 5535 df-cnv 5536 df-dm 5538 df-rn 5539 df-res 5540 df-rels 36199 df-ssr 36212 df-cnvrefs 36237 df-cnvrefrels 36238 |
This theorem is referenced by: elcnvrefrelsrel 36246 cosselcnvrefrels2 36248 |
Copyright terms: Public domain | W3C validator |