Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvrefrels2 Structured version   Visualization version   GIF version

Theorem elcnvrefrels2 38535
Description: Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 25-Jul-2019.)
Assertion
Ref Expression
elcnvrefrels2 (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ))

Proof of Theorem elcnvrefrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfcnvrefrels2 38529 . 2 CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))}
2 id 22 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
3 dmeq 5914 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
4 rneq 5947 . . . . 5 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
53, 4xpeq12d 5716 . . . 4 (𝑟 = 𝑅 → (dom 𝑟 × ran 𝑟) = (dom 𝑅 × ran 𝑅))
65ineq2d 4220 . . 3 (𝑟 = 𝑅 → ( I ∩ (dom 𝑟 × ran 𝑟)) = ( I ∩ (dom 𝑅 × ran 𝑅)))
72, 6sseq12d 4017 . 2 (𝑟 = 𝑅 → (𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅))))
81, 7rabeqel 38255 1 (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  cin 3950  wss 3951   I cid 5577   × cxp 5683  dom cdm 5685  ran crn 5686   Rels crels 38184   CnvRefRels ccnvrefrels 38190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-rels 38486  df-ssr 38499  df-cnvrefs 38526  df-cnvrefrels 38527
This theorem is referenced by:  elcnvrefrelsrel  38537  cosselcnvrefrels2  38539
  Copyright terms: Public domain W3C validator