Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvrefrels2 | Structured version Visualization version GIF version |
Description: Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 25-Jul-2019.) |
Ref | Expression |
---|---|
elcnvrefrels2 | ⊢ (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnvrefrels2 36644 | . 2 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} | |
2 | id 22 | . . 3 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
3 | dmeq 5812 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
4 | rneq 5845 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) | |
5 | 3, 4 | xpeq12d 5620 | . . . 4 ⊢ (𝑟 = 𝑅 → (dom 𝑟 × ran 𝑟) = (dom 𝑅 × ran 𝑅)) |
6 | 5 | ineq2d 4146 | . . 3 ⊢ (𝑟 = 𝑅 → ( I ∩ (dom 𝑟 × ran 𝑟)) = ( I ∩ (dom 𝑅 × ran 𝑅))) |
7 | 2, 6 | sseq12d 3954 | . 2 ⊢ (𝑟 = 𝑅 → (𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)))) |
8 | 1, 7 | rabeqel 36394 | 1 ⊢ (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 I cid 5488 × cxp 5587 dom cdm 5589 ran crn 5590 Rels crels 36335 CnvRefRels ccnvrefrels 36341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-rels 36603 df-ssr 36616 df-cnvrefs 36641 df-cnvrefrels 36642 |
This theorem is referenced by: elcnvrefrelsrel 36650 cosselcnvrefrels2 36652 |
Copyright terms: Public domain | W3C validator |