Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqrelf Structured version   Visualization version   GIF version

Theorem eqrelf 36041
Description: The equality connective between relations. (Contributed by Peter Mazsa, 25-Jun-2019.)
Hypotheses
Ref Expression
eqrelf.1 𝑥𝐴
eqrelf.2 𝑥𝐵
eqrelf.3 𝑦𝐴
eqrelf.4 𝑦𝐵
Assertion
Ref Expression
eqrelf ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem eqrelf
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqrel 5630 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑢𝑣(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)))
2 nfv 1921 . . 3 𝑢(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
3 nfv 1921 . . 3 𝑣(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
4 eqrelf.1 . . . . 5 𝑥𝐴
54nfel2 2918 . . . 4 𝑥𝑢, 𝑣⟩ ∈ 𝐴
6 eqrelf.2 . . . . 5 𝑥𝐵
76nfel2 2918 . . . 4 𝑥𝑢, 𝑣⟩ ∈ 𝐵
85, 7nfbi 1910 . . 3 𝑥(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)
9 eqrelf.3 . . . . 5 𝑦𝐴
109nfel2 2918 . . . 4 𝑦𝑢, 𝑣⟩ ∈ 𝐴
11 eqrelf.4 . . . . 5 𝑦𝐵
1211nfel2 2918 . . . 4 𝑦𝑢, 𝑣⟩ ∈ 𝐵
1310, 12nfbi 1910 . . 3 𝑦(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)
14 opeq12 4764 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → ⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩)
1514eleq1d 2818 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐴))
1614eleq1d 2818 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵))
1715, 16bibi12d 349 . . 3 ((𝑥 = 𝑢𝑦 = 𝑣) → ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)))
182, 3, 8, 13, 17cbval2v 2346 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∀𝑢𝑣(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵))
191, 18bitr4di 292 1 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1540   = wceq 1542  wcel 2114  wnfc 2880  cop 4523  Rel wrel 5531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-v 3401  df-un 3849  df-in 3851  df-ss 3861  df-sn 4518  df-pr 4520  df-op 4524  df-opab 5094  df-xp 5532  df-rel 5533
This theorem is referenced by:  vvdifopab  36045
  Copyright terms: Public domain W3C validator