Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqrelf Structured version   Visualization version   GIF version

Theorem eqrelf 36322
Description: The equality connective between relations. (Contributed by Peter Mazsa, 25-Jun-2019.)
Hypotheses
Ref Expression
eqrelf.1 𝑥𝐴
eqrelf.2 𝑥𝐵
eqrelf.3 𝑦𝐴
eqrelf.4 𝑦𝐵
Assertion
Ref Expression
eqrelf ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem eqrelf
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqrel 5684 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑢𝑣(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)))
2 nfv 1918 . . 3 𝑢(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
3 nfv 1918 . . 3 𝑣(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
4 eqrelf.1 . . . . 5 𝑥𝐴
54nfel2 2924 . . . 4 𝑥𝑢, 𝑣⟩ ∈ 𝐴
6 eqrelf.2 . . . . 5 𝑥𝐵
76nfel2 2924 . . . 4 𝑥𝑢, 𝑣⟩ ∈ 𝐵
85, 7nfbi 1907 . . 3 𝑥(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)
9 eqrelf.3 . . . . 5 𝑦𝐴
109nfel2 2924 . . . 4 𝑦𝑢, 𝑣⟩ ∈ 𝐴
11 eqrelf.4 . . . . 5 𝑦𝐵
1211nfel2 2924 . . . 4 𝑦𝑢, 𝑣⟩ ∈ 𝐵
1310, 12nfbi 1907 . . 3 𝑦(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)
14 opeq12 4803 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → ⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩)
1514eleq1d 2823 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐴))
1614eleq1d 2823 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵))
1715, 16bibi12d 345 . . 3 ((𝑥 = 𝑢𝑦 = 𝑣) → ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)))
182, 3, 8, 13, 17cbval2v 2342 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∀𝑢𝑣(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵))
191, 18bitr4di 288 1 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  wnfc 2886  cop 4564  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by:  vvdifopab  36326
  Copyright terms: Public domain W3C validator