| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqrelf | Structured version Visualization version GIF version | ||
| Description: The equality connective between relations. (Contributed by Peter Mazsa, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| eqrelf.1 | ⊢ Ⅎ𝑥𝐴 |
| eqrelf.2 | ⊢ Ⅎ𝑥𝐵 |
| eqrelf.3 | ⊢ Ⅎ𝑦𝐴 |
| eqrelf.4 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| eqrelf | ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrel 5776 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑢∀𝑣(〈𝑢, 𝑣〉 ∈ 𝐴 ↔ 〈𝑢, 𝑣〉 ∈ 𝐵))) | |
| 2 | nfv 1913 | . . 3 ⊢ Ⅎ𝑢(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 3 | nfv 1913 | . . 3 ⊢ Ⅎ𝑣(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 4 | eqrelf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | nfel2 2916 | . . . 4 ⊢ Ⅎ𝑥〈𝑢, 𝑣〉 ∈ 𝐴 |
| 6 | eqrelf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 6 | nfel2 2916 | . . . 4 ⊢ Ⅎ𝑥〈𝑢, 𝑣〉 ∈ 𝐵 |
| 8 | 5, 7 | nfbi 1902 | . . 3 ⊢ Ⅎ𝑥(〈𝑢, 𝑣〉 ∈ 𝐴 ↔ 〈𝑢, 𝑣〉 ∈ 𝐵) |
| 9 | eqrelf.3 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 10 | 9 | nfel2 2916 | . . . 4 ⊢ Ⅎ𝑦〈𝑢, 𝑣〉 ∈ 𝐴 |
| 11 | eqrelf.4 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 12 | 11 | nfel2 2916 | . . . 4 ⊢ Ⅎ𝑦〈𝑢, 𝑣〉 ∈ 𝐵 |
| 13 | 10, 12 | nfbi 1902 | . . 3 ⊢ Ⅎ𝑦(〈𝑢, 𝑣〉 ∈ 𝐴 ↔ 〈𝑢, 𝑣〉 ∈ 𝐵) |
| 14 | opeq12 4857 | . . . . 5 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 〈𝑥, 𝑦〉 = 〈𝑢, 𝑣〉) | |
| 15 | 14 | eleq1d 2818 | . . . 4 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑢, 𝑣〉 ∈ 𝐴)) |
| 16 | 14 | eleq1d 2818 | . . . 4 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (〈𝑥, 𝑦〉 ∈ 𝐵 ↔ 〈𝑢, 𝑣〉 ∈ 𝐵)) |
| 17 | 15, 16 | bibi12d 345 | . . 3 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ((〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ (〈𝑢, 𝑣〉 ∈ 𝐴 ↔ 〈𝑢, 𝑣〉 ∈ 𝐵))) |
| 18 | 2, 3, 8, 13, 17 | cbval2v 2343 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ ∀𝑢∀𝑣(〈𝑢, 𝑣〉 ∈ 𝐴 ↔ 〈𝑢, 𝑣〉 ∈ 𝐵)) |
| 19 | 1, 18 | bitr4di 289 | 1 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2882 〈cop 4614 Rel wrel 5672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-opab 5188 df-xp 5673 df-rel 5674 |
| This theorem is referenced by: vvdifopab 38202 |
| Copyright terms: Public domain | W3C validator |