Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefrels2 Structured version   Visualization version   GIF version

Theorem elrefrels2 36562
Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.)
Assertion
Ref Expression
elrefrels2 (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅 ∈ Rels ))

Proof of Theorem elrefrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfrefrels2 36558 . 2 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
2 dmeq 5801 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 rneq 5834 . . . . 5 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
42, 3xpeq12d 5611 . . . 4 (𝑟 = 𝑅 → (dom 𝑟 × ran 𝑟) = (dom 𝑅 × ran 𝑅))
54ineq2d 4143 . . 3 (𝑟 = 𝑅 → ( I ∩ (dom 𝑟 × ran 𝑟)) = ( I ∩ (dom 𝑅 × ran 𝑅)))
6 id 22 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
75, 6sseq12d 3950 . 2 (𝑟 = 𝑅 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅))
81, 7rabeqel 36321 1 (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883   I cid 5479   × cxp 5578  dom cdm 5580  ran crn 5581   Rels crels 36262   RefRels crefrels 36265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-rels 36530  df-ssr 36543  df-refs 36555  df-refrels 36556
This theorem is referenced by:  elrefrelsrel  36564
  Copyright terms: Public domain W3C validator