| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrefrels2 | Structured version Visualization version GIF version | ||
| Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| elrefrels2 | ⊢ (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrels2 38504 | . 2 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | |
| 2 | dmeq 5867 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
| 3 | rneq 5900 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) | |
| 4 | 2, 3 | xpeq12d 5669 | . . . 4 ⊢ (𝑟 = 𝑅 → (dom 𝑟 × ran 𝑟) = (dom 𝑅 × ran 𝑅)) |
| 5 | 4 | ineq2d 4183 | . . 3 ⊢ (𝑟 = 𝑅 → ( I ∩ (dom 𝑟 × ran 𝑟)) = ( I ∩ (dom 𝑅 × ran 𝑅))) |
| 6 | id 22 | . . 3 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 7 | 5, 6 | sseq12d 3980 | . 2 ⊢ (𝑟 = 𝑅 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅)) |
| 8 | 1, 7 | rabeqel 38243 | 1 ⊢ (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 I cid 5532 × cxp 5636 dom cdm 5638 ran crn 5639 Rels crels 38171 RefRels crefrels 38174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-rels 38476 df-ssr 38489 df-refs 38501 df-refrels 38502 |
| This theorem is referenced by: elrefrelsrel 38511 |
| Copyright terms: Public domain | W3C validator |