| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrefrels2 | Structured version Visualization version GIF version | ||
| Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| elrefrels2 | ⊢ (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrels2 38550 | . 2 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | |
| 2 | dmeq 5838 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
| 3 | rneq 5871 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) | |
| 4 | 2, 3 | xpeq12d 5642 | . . . 4 ⊢ (𝑟 = 𝑅 → (dom 𝑟 × ran 𝑟) = (dom 𝑅 × ran 𝑅)) |
| 5 | 4 | ineq2d 4165 | . . 3 ⊢ (𝑟 = 𝑅 → ( I ∩ (dom 𝑟 × ran 𝑟)) = ( I ∩ (dom 𝑅 × ran 𝑅))) |
| 6 | id 22 | . . 3 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 7 | 5, 6 | sseq12d 3963 | . 2 ⊢ (𝑟 = 𝑅 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅)) |
| 8 | 1, 7 | rabeqel 38289 | 1 ⊢ (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 I cid 5505 × cxp 5609 dom cdm 5611 ran crn 5612 Rels crels 38217 RefRels crefrels 38220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-rels 38522 df-ssr 38535 df-refs 38547 df-refrels 38548 |
| This theorem is referenced by: elrefrelsrel 38557 |
| Copyright terms: Public domain | W3C validator |