![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrefrels2 | Structured version Visualization version GIF version |
Description: Element of the class of all reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
Ref | Expression |
---|---|
elrefrels2 | ⊢ (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrefrels2 34598 | . 2 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | |
2 | dmeq 5460 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
3 | rneq 5487 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) | |
4 | 2, 3 | xpeq12d 5279 | . . . 4 ⊢ (𝑟 = 𝑅 → (dom 𝑟 × ran 𝑟) = (dom 𝑅 × ran 𝑅)) |
5 | 4 | ineq2d 3965 | . . 3 ⊢ (𝑟 = 𝑅 → ( I ∩ (dom 𝑟 × ran 𝑟)) = ( I ∩ (dom 𝑅 × ran 𝑅))) |
6 | id 22 | . . 3 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
7 | 5, 6 | sseq12d 3783 | . 2 ⊢ (𝑟 = 𝑅 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅)) |
8 | 1, 7 | rabeqel 34355 | 1 ⊢ (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∩ cin 3722 ⊆ wss 3723 I cid 5156 × cxp 5247 dom cdm 5249 ran crn 5250 Rels crels 34310 RefRels crefrels 34313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-xp 5255 df-rel 5256 df-cnv 5257 df-dm 5259 df-rn 5260 df-res 5261 df-rels 34570 df-ssr 34583 df-refs 34595 df-refrels 34596 |
This theorem is referenced by: elrefrelsrel 34604 |
Copyright terms: Public domain | W3C validator |