Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefrels2 Structured version   Visualization version   GIF version

Theorem elrefrels2 38541
Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.)
Assertion
Ref Expression
elrefrels2 (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅 ∈ Rels ))

Proof of Theorem elrefrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfrefrels2 38536 . 2 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
2 dmeq 5888 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 rneq 5921 . . . . 5 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
42, 3xpeq12d 5690 . . . 4 (𝑟 = 𝑅 → (dom 𝑟 × ran 𝑟) = (dom 𝑅 × ran 𝑅))
54ineq2d 4200 . . 3 (𝑟 = 𝑅 → ( I ∩ (dom 𝑟 × ran 𝑟)) = ( I ∩ (dom 𝑅 × ran 𝑅)))
6 id 22 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
75, 6sseq12d 3997 . 2 (𝑟 = 𝑅 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅))
81, 7rabeqel 38277 1 (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3930  wss 3931   I cid 5552   × cxp 5657  dom cdm 5659  ran crn 5660   Rels crels 38206   RefRels crefrels 38209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-rels 38508  df-ssr 38521  df-refs 38533  df-refrels 38534
This theorem is referenced by:  elrefrelsrel  38543
  Copyright terms: Public domain W3C validator