Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefrels2 Structured version   Visualization version   GIF version

Theorem elrefrels2 38555
Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.)
Assertion
Ref Expression
elrefrels2 (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅 ∈ Rels ))

Proof of Theorem elrefrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfrefrels2 38550 . 2 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
2 dmeq 5838 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 rneq 5871 . . . . 5 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
42, 3xpeq12d 5642 . . . 4 (𝑟 = 𝑅 → (dom 𝑟 × ran 𝑟) = (dom 𝑅 × ran 𝑅))
54ineq2d 4165 . . 3 (𝑟 = 𝑅 → ( I ∩ (dom 𝑟 × ran 𝑟)) = ( I ∩ (dom 𝑅 × ran 𝑅)))
6 id 22 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
75, 6sseq12d 3963 . 2 (𝑟 = 𝑅 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅))
81, 7rabeqel 38289 1 (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  cin 3896  wss 3897   I cid 5505   × cxp 5609  dom cdm 5611  ran crn 5612   Rels crels 38217   RefRels crefrels 38220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-rels 38522  df-ssr 38535  df-refs 38547  df-refrels 38548
This theorem is referenced by:  elrefrelsrel  38557
  Copyright terms: Public domain W3C validator