Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsymrels3 Structured version   Visualization version   GIF version

Theorem elsymrels3 36668
Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.)
Assertion
Ref Expression
elsymrels3 (𝑅 ∈ SymRels ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elsymrels3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfsymrels3 36660 . 2 SymRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥)}
2 breq 5076 . . . 4 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
3 breq 5076 . . . 4 (𝑟 = 𝑅 → (𝑦𝑟𝑥𝑦𝑅𝑥))
42, 3imbi12d 345 . . 3 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑦𝑟𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
542albidv 1926 . 2 (𝑟 = 𝑅 → (∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
61, 5rabeqel 36394 1 (𝑅 ∈ SymRels ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106   class class class wbr 5074   Rels crels 36335   SymRels csymrels 36344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-rels 36603  df-ssr 36616  df-syms 36656  df-symrels 36657
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator