Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefsymrels2 Structured version   Visualization version   GIF version

Theorem elrefsymrels2 38525
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38544) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 38469, cf. the comment of dfrefrels2 38469. (Contributed by Peter Mazsa, 22-Jul-2019.)
Assertion
Ref Expression
elrefsymrels2 (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ 𝑅 ∈ Rels ))

Proof of Theorem elrefsymrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 refsymrels2 38521 . 2 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
2 dmeq 5928 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
32reseq2d 6009 . . . 4 (𝑟 = 𝑅 → ( I ↾ dom 𝑟) = ( I ↾ dom 𝑅))
4 id 22 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
53, 4sseq12d 4042 . . 3 (𝑟 = 𝑅 → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))
6 cnveq 5898 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
76, 4sseq12d 4042 . . 3 (𝑟 = 𝑅 → (𝑟𝑟𝑅𝑅))
85, 7anbi12d 631 . 2 (𝑟 = 𝑅 → ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅)))
91, 8rabeqel 38210 1 (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976   I cid 5592  ccnv 5699  dom cdm 5700  cres 5702   Rels crels 38137   RefRels crefrels 38140   SymRels csymrels 38146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-rels 38441  df-ssr 38454  df-refs 38466  df-refrels 38467  df-syms 38498  df-symrels 38499
This theorem is referenced by:  elrefsymrels3  38526
  Copyright terms: Public domain W3C validator