Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrefsymrels2 | Structured version Visualization version GIF version |
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 36438) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 36368, cf. the comment of dfrefrels2 36368. (Contributed by Peter Mazsa, 22-Jul-2019.) |
Ref | Expression |
---|---|
elrefsymrels2 | ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refsymrels2 36416 | . 2 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
2 | dmeq 5772 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
3 | 2 | reseq2d 5851 | . . . 4 ⊢ (𝑟 = 𝑅 → ( I ↾ dom 𝑟) = ( I ↾ dom 𝑅)) |
4 | id 22 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
5 | 3, 4 | sseq12d 3934 | . . 3 ⊢ (𝑟 = 𝑅 → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
6 | cnveq 5742 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
7 | 6, 4 | sseq12d 3934 | . . 3 ⊢ (𝑟 = 𝑅 → (◡𝑟 ⊆ 𝑟 ↔ ◡𝑅 ⊆ 𝑅)) |
8 | 5, 7 | anbi12d 634 | . 2 ⊢ (𝑟 = 𝑅 → ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅))) |
9 | 1, 8 | rabeqel 36131 | 1 ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∩ cin 3865 ⊆ wss 3866 I cid 5454 ◡ccnv 5550 dom cdm 5551 ↾ cres 5553 Rels crels 36072 RefRels crefrels 36075 SymRels csymrels 36081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-rels 36340 df-ssr 36353 df-refs 36365 df-refrels 36366 df-syms 36393 df-symrels 36394 |
This theorem is referenced by: elrefsymrels3 36421 |
Copyright terms: Public domain | W3C validator |