Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefsymrels2 Structured version   Visualization version   GIF version

Theorem elrefsymrels2 38738
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38757) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 38678, cf. the comment of dfrefrels2 38678. (Contributed by Peter Mazsa, 22-Jul-2019.)
Assertion
Ref Expression
elrefsymrels2 (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ 𝑅 ∈ Rels ))

Proof of Theorem elrefsymrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 refsymrels2 38734 . 2 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
2 dmeq 5849 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
32reseq2d 5935 . . . 4 (𝑟 = 𝑅 → ( I ↾ dom 𝑟) = ( I ↾ dom 𝑅))
4 id 22 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
53, 4sseq12d 3964 . . 3 (𝑟 = 𝑅 → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))
6 cnveq 5819 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
76, 4sseq12d 3964 . . 3 (𝑟 = 𝑅 → (𝑟𝑟𝑅𝑅))
85, 7anbi12d 632 . 2 (𝑟 = 𝑅 → ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅)))
91, 8rabeqel 38364 1 (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  cin 3897  wss 3898   I cid 5515  ccnv 5620  dom cdm 5621  cres 5623   Rels crels 38297   RefRels crefrels 38300   SymRels csymrels 38306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-rels 38537  df-ssr 38663  df-refs 38675  df-refrels 38676  df-syms 38707  df-symrels 38708
This theorem is referenced by:  elrefsymrels3  38739
  Copyright terms: Public domain W3C validator