| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrefsymrels2 | Structured version Visualization version GIF version | ||
| Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38631) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 38556, cf. the comment of dfrefrels2 38556. (Contributed by Peter Mazsa, 22-Jul-2019.) |
| Ref | Expression |
|---|---|
| elrefsymrels2 | ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsymrels2 38608 | . 2 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
| 2 | dmeq 5843 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
| 3 | 2 | reseq2d 5928 | . . . 4 ⊢ (𝑟 = 𝑅 → ( I ↾ dom 𝑟) = ( I ↾ dom 𝑅)) |
| 4 | id 22 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 5 | 3, 4 | sseq12d 3968 | . . 3 ⊢ (𝑟 = 𝑅 → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
| 6 | cnveq 5813 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
| 7 | 6, 4 | sseq12d 3968 | . . 3 ⊢ (𝑟 = 𝑅 → (◡𝑟 ⊆ 𝑟 ↔ ◡𝑅 ⊆ 𝑅)) |
| 8 | 5, 7 | anbi12d 632 | . 2 ⊢ (𝑟 = 𝑅 → ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅))) |
| 9 | 1, 8 | rabeqel 38295 | 1 ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 I cid 5510 ◡ccnv 5615 dom cdm 5616 ↾ cres 5618 Rels crels 38223 RefRels crefrels 38226 SymRels csymrels 38232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-rels 38528 df-ssr 38541 df-refs 38553 df-refrels 38554 df-syms 38585 df-symrels 38586 |
| This theorem is referenced by: elrefsymrels3 38613 |
| Copyright terms: Public domain | W3C validator |