Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefsymrels2 Structured version   Visualization version   GIF version

Theorem elrefsymrels2 36420
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 36438) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 36368, cf. the comment of dfrefrels2 36368. (Contributed by Peter Mazsa, 22-Jul-2019.)
Assertion
Ref Expression
elrefsymrels2 (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ 𝑅 ∈ Rels ))

Proof of Theorem elrefsymrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 refsymrels2 36416 . 2 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
2 dmeq 5772 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
32reseq2d 5851 . . . 4 (𝑟 = 𝑅 → ( I ↾ dom 𝑟) = ( I ↾ dom 𝑅))
4 id 22 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
53, 4sseq12d 3934 . . 3 (𝑟 = 𝑅 → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))
6 cnveq 5742 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
76, 4sseq12d 3934 . . 3 (𝑟 = 𝑅 → (𝑟𝑟𝑅𝑅))
85, 7anbi12d 634 . 2 (𝑟 = 𝑅 → ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅)))
91, 8rabeqel 36131 1 (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2110  cin 3865  wss 3866   I cid 5454  ccnv 5550  dom cdm 5551  cres 5553   Rels crels 36072   RefRels crefrels 36075   SymRels csymrels 36081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563  df-rels 36340  df-ssr 36353  df-refs 36365  df-refrels 36366  df-syms 36393  df-symrels 36394
This theorem is referenced by:  elrefsymrels3  36421
  Copyright terms: Public domain W3C validator