Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrrels3 Structured version   Visualization version   GIF version

Theorem eltrrels3 35995
 Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
eltrrels3 (𝑅 ∈ TrRels ↔ (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧

Proof of Theorem eltrrels3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dftrrels3 35991 . 2 TrRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)}
2 breq 5033 . . . . . 6 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
3 breq 5033 . . . . . 6 (𝑟 = 𝑅 → (𝑦𝑟𝑧𝑦𝑅𝑧))
42, 3anbi12d 633 . . . . 5 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑦𝑟𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
5 breq 5033 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑧𝑥𝑅𝑧))
64, 5imbi12d 348 . . . 4 (𝑟 = 𝑅 → (((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
762albidv 1924 . . 3 (𝑟 = 𝑅 → (∀𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
87albidv 1921 . 2 (𝑟 = 𝑅 → (∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
91, 8rabeqel 35695 1 (𝑅 ∈ TrRels ↔ (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538   ∈ wcel 2111   class class class wbr 5031   Rels crels 35634   TrRels ctrrels 35646 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-br 5032  df-opab 5094  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-rels 35904  df-ssr 35917  df-trs 35987  df-trrels 35988 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator