Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrrels3 Structured version   Visualization version   GIF version

Theorem eltrrels3 38566
Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
eltrrels3 (𝑅 ∈ TrRels ↔ (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧

Proof of Theorem eltrrels3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dftrrels3 38562 . 2 TrRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)}
2 breq 5111 . . . . . 6 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
3 breq 5111 . . . . . 6 (𝑟 = 𝑅 → (𝑦𝑟𝑧𝑦𝑅𝑧))
42, 3anbi12d 632 . . . . 5 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑦𝑟𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
5 breq 5111 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑧𝑥𝑅𝑧))
64, 5imbi12d 344 . . . 4 (𝑟 = 𝑅 → (((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
762albidv 1923 . . 3 (𝑟 = 𝑅 → (∀𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
87albidv 1920 . 2 (𝑟 = 𝑅 → (∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
91, 8rabeqel 38238 1 (𝑅 ∈ TrRels ↔ (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109   class class class wbr 5109   Rels crels 38166   TrRels ctrrels 38178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-rels 38471  df-ssr 38484  df-trs 38558  df-trrels 38559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator