Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrrels3 Structured version   Visualization version   GIF version

Theorem eltrrels3 38226
Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
eltrrels3 (𝑅 ∈ TrRels ↔ (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧

Proof of Theorem eltrrels3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dftrrels3 38222 . 2 TrRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)}
2 breq 5154 . . . . . 6 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
3 breq 5154 . . . . . 6 (𝑟 = 𝑅 → (𝑦𝑟𝑧𝑦𝑅𝑧))
42, 3anbi12d 630 . . . . 5 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑦𝑟𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
5 breq 5154 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑧𝑥𝑅𝑧))
64, 5imbi12d 343 . . . 4 (𝑟 = 𝑅 → (((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
762albidv 1918 . . 3 (𝑟 = 𝑅 → (∀𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
87albidv 1915 . 2 (𝑟 = 𝑅 → (∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
91, 8rabeqel 37900 1 (𝑅 ∈ TrRels ↔ (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wcel 2098   class class class wbr 5152   Rels crels 37826   TrRels ctrrels 37838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pr 5432
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-rels 38131  df-ssr 38144  df-trs 38218  df-trrels 38219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator