Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefrels3 Structured version   Visualization version   GIF version

Theorem elrefrels3 37384
Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.)
Assertion
Ref Expression
elrefrels3 (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elrefrels3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfrefrels3 37379 . 2 RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦)}
2 dmeq 5903 . . 3 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 rneq 5935 . . . 4 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
4 breq 5150 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
54imbi2d 340 . . . 4 (𝑟 = 𝑅 → ((𝑥 = 𝑦𝑥𝑟𝑦) ↔ (𝑥 = 𝑦𝑥𝑅𝑦)))
63, 5raleqbidv 3342 . . 3 (𝑟 = 𝑅 → (∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦) ↔ ∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)))
72, 6raleqbidv 3342 . 2 (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦) ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)))
81, 7rabeqel 37117 1 (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061   class class class wbr 5148  dom cdm 5676  ran crn 5677   Rels crels 37040   RefRels crefrels 37043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-rels 37350  df-ssr 37363  df-refs 37375  df-refrels 37376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator