Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrefrels3 | Structured version Visualization version GIF version |
Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
Ref | Expression |
---|---|
elrefrels3 | ⊢ (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrefrels3 36628 | . 2 ⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} | |
2 | dmeq 5811 | . . 3 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
3 | rneq 5844 | . . . 4 ⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) | |
4 | breq 5081 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
5 | 4 | imbi2d 341 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥 = 𝑦 → 𝑥𝑟𝑦) ↔ (𝑥 = 𝑦 → 𝑥𝑅𝑦))) |
6 | 3, 5 | raleqbidv 3335 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) ↔ ∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦))) |
7 | 2, 6 | raleqbidv 3335 | . 2 ⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) ↔ ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦))) |
8 | 1, 7 | rabeqel 36390 | 1 ⊢ (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 class class class wbr 5079 dom cdm 5590 ran crn 5591 Rels crels 36331 RefRels crefrels 36334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-rels 36599 df-ssr 36612 df-refs 36624 df-refrels 36625 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |