Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefrels3 Structured version   Visualization version   GIF version

Theorem elrefrels3 36636
Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.)
Assertion
Ref Expression
elrefrels3 (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elrefrels3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfrefrels3 36632 . 2 RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦)}
2 dmeq 5812 . . 3 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 rneq 5845 . . . 4 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
4 breq 5076 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
54imbi2d 341 . . . 4 (𝑟 = 𝑅 → ((𝑥 = 𝑦𝑥𝑟𝑦) ↔ (𝑥 = 𝑦𝑥𝑅𝑦)))
63, 5raleqbidv 3336 . . 3 (𝑟 = 𝑅 → (∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦) ↔ ∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)))
72, 6raleqbidv 3336 . 2 (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦) ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)))
81, 7rabeqel 36394 1 (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  dom cdm 5589  ran crn 5590   Rels crels 36335   RefRels crefrels 36338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-rels 36603  df-ssr 36616  df-refs 36628  df-refrels 36629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator