Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefrels3 Structured version   Visualization version   GIF version

Theorem elrefrels3 38510
Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.)
Assertion
Ref Expression
elrefrels3 (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elrefrels3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfrefrels3 38505 . 2 RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦)}
2 dmeq 5867 . . 3 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 rneq 5900 . . . 4 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
4 breq 5109 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
54imbi2d 340 . . . 4 (𝑟 = 𝑅 → ((𝑥 = 𝑦𝑥𝑟𝑦) ↔ (𝑥 = 𝑦𝑥𝑅𝑦)))
63, 5raleqbidv 3319 . . 3 (𝑟 = 𝑅 → (∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦) ↔ ∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)))
72, 6raleqbidv 3319 . 2 (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦) ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)))
81, 7rabeqel 38243 1 (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  dom cdm 5638  ran crn 5639   Rels crels 38171   RefRels crefrels 38174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-rels 38476  df-ssr 38489  df-refs 38501  df-refrels 38502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator