Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrefrels3 | Structured version Visualization version GIF version |
Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
Ref | Expression |
---|---|
elrefrels3 | ⊢ (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrefrels3 36632 | . 2 ⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} | |
2 | dmeq 5812 | . . 3 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
3 | rneq 5845 | . . . 4 ⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) | |
4 | breq 5076 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
5 | 4 | imbi2d 341 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥 = 𝑦 → 𝑥𝑟𝑦) ↔ (𝑥 = 𝑦 → 𝑥𝑅𝑦))) |
6 | 3, 5 | raleqbidv 3336 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) ↔ ∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦))) |
7 | 2, 6 | raleqbidv 3336 | . 2 ⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) ↔ ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦))) |
8 | 1, 7 | rabeqel 36394 | 1 ⊢ (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 dom cdm 5589 ran crn 5590 Rels crels 36335 RefRels crefrels 36338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-rels 36603 df-ssr 36616 df-refs 36628 df-refrels 36629 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |