![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsymrels5 | Structured version Visualization version GIF version |
Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
Ref | Expression |
---|---|
elsymrels5 | ⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsymrels5 37418 | . 2 ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | |
2 | breq 5151 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
3 | breq 5151 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑦𝑟𝑥 ↔ 𝑦𝑅𝑥)) | |
4 | 2, 3 | bibi12d 346 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥) ↔ (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
5 | 4 | 2albidv 1927 | . 2 ⊢ (𝑟 = 𝑅 → (∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
6 | 1, 5 | rabeqel 37122 | 1 ⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 Rels crels 37045 SymRels csymrels 37054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-rels 37355 df-ssr 37368 df-syms 37412 df-symrels 37413 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |