Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsymrels5 Structured version   Visualization version   GIF version

Theorem elsymrels5 38579
Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.)
Assertion
Ref Expression
elsymrels5 (𝑅 ∈ SymRels ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elsymrels5
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfsymrels5 38571 . 2 SymRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥)}
2 breq 5126 . . . 4 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
3 breq 5126 . . . 4 (𝑟 = 𝑅 → (𝑦𝑟𝑥𝑦𝑅𝑥))
42, 3bibi12d 345 . . 3 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑦𝑟𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
542albidv 1923 . 2 (𝑟 = 𝑅 → (∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
61, 5rabeqel 38277 1 (𝑅 ∈ SymRels ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109   class class class wbr 5124   Rels crels 38206   SymRels csymrels 38215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-rels 38508  df-ssr 38521  df-syms 38565  df-symrels 38566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator