Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleqvrels3 Structured version   Visualization version   GIF version

Theorem eleqvrels3 37976
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.)
Assertion
Ref Expression
eleqvrels3 (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧

Proof of Theorem eleqvrels3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfeqvrels3 37972 . 2 EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
2 dmeq 5897 . . . 4 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 breq 5143 . . . 4 (𝑟 = 𝑅 → (𝑥𝑟𝑥𝑥𝑅𝑥))
42, 3raleqbidv 3336 . . 3 (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥))
5 breq 5143 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
6 breq 5143 . . . . 5 (𝑟 = 𝑅 → (𝑦𝑟𝑥𝑦𝑅𝑥))
75, 6imbi12d 344 . . . 4 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑦𝑟𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
872albidv 1918 . . 3 (𝑟 = 𝑅 → (∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
9 breq 5143 . . . . . . 7 (𝑟 = 𝑅 → (𝑦𝑟𝑧𝑦𝑅𝑧))
105, 9anbi12d 630 . . . . . 6 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑦𝑟𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
11 breq 5143 . . . . . 6 (𝑟 = 𝑅 → (𝑥𝑟𝑧𝑥𝑅𝑧))
1210, 11imbi12d 344 . . . . 5 (𝑟 = 𝑅 → (((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
13122albidv 1918 . . . 4 (𝑟 = 𝑅 → (∀𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
1413albidv 1915 . . 3 (𝑟 = 𝑅 → (∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
154, 8, 143anbi123d 1432 . 2 (𝑟 = 𝑅 → ((∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
161, 15rabeqel 37635 1 (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084  wal 1531   = wceq 1533  wcel 2098  wral 3055   class class class wbr 5141  dom cdm 5669   Rels crels 37558   EqvRels ceqvrels 37572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-rels 37868  df-ssr 37881  df-refs 37893  df-refrels 37894  df-syms 37925  df-symrels 37926  df-trs 37955  df-trrels 37956  df-eqvrels 37967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator