Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleqvrels3 Structured version   Visualization version   GIF version

Theorem eleqvrels3 36633
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.)
Assertion
Ref Expression
eleqvrels3 (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧

Proof of Theorem eleqvrels3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfeqvrels3 36629 . 2 EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
2 dmeq 5801 . . . 4 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 breq 5072 . . . 4 (𝑟 = 𝑅 → (𝑥𝑟𝑥𝑥𝑅𝑥))
42, 3raleqbidv 3327 . . 3 (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥))
5 breq 5072 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
6 breq 5072 . . . . 5 (𝑟 = 𝑅 → (𝑦𝑟𝑥𝑦𝑅𝑥))
75, 6imbi12d 344 . . . 4 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑦𝑟𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
872albidv 1927 . . 3 (𝑟 = 𝑅 → (∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
9 breq 5072 . . . . . . 7 (𝑟 = 𝑅 → (𝑦𝑟𝑧𝑦𝑅𝑧))
105, 9anbi12d 630 . . . . . 6 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑦𝑟𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
11 breq 5072 . . . . . 6 (𝑟 = 𝑅 → (𝑥𝑟𝑧𝑥𝑅𝑧))
1210, 11imbi12d 344 . . . . 5 (𝑟 = 𝑅 → (((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
13122albidv 1927 . . . 4 (𝑟 = 𝑅 → (∀𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
1413albidv 1924 . . 3 (𝑟 = 𝑅 → (∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
154, 8, 143anbi123d 1434 . 2 (𝑟 = 𝑅 → ((∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
161, 15rabeqel 36321 1 (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  dom cdm 5580   Rels crels 36262   EqvRels ceqvrels 36276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-rels 36530  df-ssr 36543  df-refs 36555  df-refrels 36556  df-syms 36583  df-symrels 36584  df-trs 36613  df-trrels 36614  df-eqvrels 36624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator