![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleqvrels3 | Structured version Visualization version GIF version |
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
Ref | Expression |
---|---|
eleqvrels3 | ⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfeqvrels3 37080 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | |
2 | dmeq 5864 | . . . 4 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
3 | breq 5112 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑥 ↔ 𝑥𝑅𝑥)) | |
4 | 2, 3 | raleqbidv 3322 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)) |
5 | breq 5112 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
6 | breq 5112 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑦𝑟𝑥 ↔ 𝑦𝑅𝑥)) | |
7 | 5, 6 | imbi12d 345 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 → 𝑦𝑟𝑥) ↔ (𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
8 | 7 | 2albidv 1927 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
9 | breq 5112 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑦𝑟𝑧 ↔ 𝑦𝑅𝑧)) | |
10 | 5, 9 | anbi12d 632 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
11 | breq 5112 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑧 ↔ 𝑥𝑅𝑧)) | |
12 | 10, 11 | imbi12d 345 | . . . . 5 ⊢ (𝑟 = 𝑅 → (((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
13 | 12 | 2albidv 1927 | . . . 4 ⊢ (𝑟 = 𝑅 → (∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
14 | 13 | albidv 1924 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
15 | 4, 8, 14 | 3anbi123d 1437 | . 2 ⊢ (𝑟 = 𝑅 → ((∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
16 | 1, 15 | rabeqel 36743 | 1 ⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∀wral 3065 class class class wbr 5110 dom cdm 5638 Rels crels 36665 EqvRels ceqvrels 36679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-rels 36976 df-ssr 36989 df-refs 37001 df-refrels 37002 df-syms 37033 df-symrels 37034 df-trs 37063 df-trrels 37064 df-eqvrels 37075 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |