Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleqvrels3 Structured version   Visualization version   GIF version

Theorem eleqvrels3 38557
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.)
Assertion
Ref Expression
eleqvrels3 (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧

Proof of Theorem eleqvrels3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfeqvrels3 38553 . 2 EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
2 dmeq 5857 . . . 4 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 breq 5104 . . . 4 (𝑟 = 𝑅 → (𝑥𝑟𝑥𝑥𝑅𝑥))
42, 3raleqbidv 3316 . . 3 (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥))
5 breq 5104 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
6 breq 5104 . . . . 5 (𝑟 = 𝑅 → (𝑦𝑟𝑥𝑦𝑅𝑥))
75, 6imbi12d 344 . . . 4 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑦𝑟𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
872albidv 1923 . . 3 (𝑟 = 𝑅 → (∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
9 breq 5104 . . . . . . 7 (𝑟 = 𝑅 → (𝑦𝑟𝑧𝑦𝑅𝑧))
105, 9anbi12d 632 . . . . . 6 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑦𝑟𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
11 breq 5104 . . . . . 6 (𝑟 = 𝑅 → (𝑥𝑟𝑧𝑥𝑅𝑧))
1210, 11imbi12d 344 . . . . 5 (𝑟 = 𝑅 → (((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
13122albidv 1923 . . . 4 (𝑟 = 𝑅 → (∀𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
1413albidv 1920 . . 3 (𝑟 = 𝑅 → (∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
154, 8, 143anbi123d 1438 . 2 (𝑟 = 𝑅 → ((∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
161, 15rabeqel 38216 1 (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  dom cdm 5631   Rels crels 38144   EqvRels ceqvrels 38158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-rels 38449  df-ssr 38462  df-refs 38474  df-refrels 38475  df-syms 38506  df-symrels 38507  df-trs 38536  df-trrels 38537  df-eqvrels 38548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator