![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleqvrels3 | Structured version Visualization version GIF version |
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
Ref | Expression |
---|---|
eleqvrels3 | ⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfeqvrels3 34827 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | |
2 | dmeq 5527 | . . . 4 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
3 | breq 4845 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑥 ↔ 𝑥𝑅𝑥)) | |
4 | 2, 3 | raleqbidv 3335 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)) |
5 | breq 4845 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
6 | breq 4845 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑦𝑟𝑥 ↔ 𝑦𝑅𝑥)) | |
7 | 5, 6 | imbi12d 336 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 → 𝑦𝑟𝑥) ↔ (𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
8 | 7 | 2albidv 2019 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
9 | breq 4845 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑦𝑟𝑧 ↔ 𝑦𝑅𝑧)) | |
10 | 5, 9 | anbi12d 625 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
11 | breq 4845 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑧 ↔ 𝑥𝑅𝑧)) | |
12 | 10, 11 | imbi12d 336 | . . . . 5 ⊢ (𝑟 = 𝑅 → (((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
13 | 12 | 2albidv 2019 | . . . 4 ⊢ (𝑟 = 𝑅 → (∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
14 | 13 | albidv 2016 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
15 | 4, 8, 14 | 3anbi123d 1561 | . 2 ⊢ (𝑟 = 𝑅 → ((∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
16 | 1, 15 | rabeqel 34519 | 1 ⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 ∀wal 1651 = wceq 1653 ∈ wcel 2157 ∀wral 3089 class class class wbr 4843 dom cdm 5312 Rels crels 34471 EqvRels ceqvrels 34485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-rels 34729 df-ssr 34742 df-refs 34754 df-refrels 34755 df-syms 34782 df-symrels 34783 df-trs 34812 df-trrels 34813 df-eqvrels 34823 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |