![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleqvrels3 | Structured version Visualization version GIF version |
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
Ref | Expression |
---|---|
eleqvrels3 | ⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfeqvrels3 37972 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | |
2 | dmeq 5897 | . . . 4 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
3 | breq 5143 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑥 ↔ 𝑥𝑅𝑥)) | |
4 | 2, 3 | raleqbidv 3336 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)) |
5 | breq 5143 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
6 | breq 5143 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑦𝑟𝑥 ↔ 𝑦𝑅𝑥)) | |
7 | 5, 6 | imbi12d 344 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 → 𝑦𝑟𝑥) ↔ (𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
8 | 7 | 2albidv 1918 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
9 | breq 5143 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑦𝑟𝑧 ↔ 𝑦𝑅𝑧)) | |
10 | 5, 9 | anbi12d 630 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
11 | breq 5143 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑧 ↔ 𝑥𝑅𝑧)) | |
12 | 10, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑟 = 𝑅 → (((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
13 | 12 | 2albidv 1918 | . . . 4 ⊢ (𝑟 = 𝑅 → (∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
14 | 13 | albidv 1915 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
15 | 4, 8, 14 | 3anbi123d 1432 | . 2 ⊢ (𝑟 = 𝑅 → ((∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
16 | 1, 15 | rabeqel 37635 | 1 ⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3055 class class class wbr 5141 dom cdm 5669 Rels crels 37558 EqvRels ceqvrels 37572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-rels 37868 df-ssr 37881 df-refs 37893 df-refrels 37894 df-syms 37925 df-symrels 37926 df-trs 37955 df-trrels 37956 df-eqvrels 37967 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |