![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleqvrels3 | Structured version Visualization version GIF version |
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
Ref | Expression |
---|---|
eleqvrels3 | ⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfeqvrels3 37454 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | |
2 | dmeq 5903 | . . . 4 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
3 | breq 5150 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑥 ↔ 𝑥𝑅𝑥)) | |
4 | 2, 3 | raleqbidv 3342 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)) |
5 | breq 5150 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
6 | breq 5150 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑦𝑟𝑥 ↔ 𝑦𝑅𝑥)) | |
7 | 5, 6 | imbi12d 344 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 → 𝑦𝑟𝑥) ↔ (𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
8 | 7 | 2albidv 1926 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
9 | breq 5150 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑦𝑟𝑧 ↔ 𝑦𝑅𝑧)) | |
10 | 5, 9 | anbi12d 631 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
11 | breq 5150 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑧 ↔ 𝑥𝑅𝑧)) | |
12 | 10, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑟 = 𝑅 → (((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
13 | 12 | 2albidv 1926 | . . . 4 ⊢ (𝑟 = 𝑅 → (∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
14 | 13 | albidv 1923 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
15 | 4, 8, 14 | 3anbi123d 1436 | . 2 ⊢ (𝑟 = 𝑅 → ((∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
16 | 1, 15 | rabeqel 37117 | 1 ⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ∀wral 3061 class class class wbr 5148 dom cdm 5676 Rels crels 37040 EqvRels ceqvrels 37054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-rels 37350 df-ssr 37363 df-refs 37375 df-refrels 37376 df-syms 37407 df-symrels 37408 df-trs 37437 df-trrels 37438 df-eqvrels 37449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |