Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindfpropd Structured version   Visualization version   GIF version

Theorem lindfpropd 31576
Description: Property deduction for linearly independent families. (Contributed by Thierry Arnoux, 16-Jul-2023.)
Hypotheses
Ref Expression
lindfpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
lindfpropd.2 (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿)))
lindfpropd.3 (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))
lindfpropd.4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lindfpropd.5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))
lindfpropd.6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
lindfpropd.k (𝜑𝐾𝑉)
lindfpropd.l (𝜑𝐿𝑊)
lindfpropd.x (𝜑𝑋𝐴)
Assertion
Ref Expression
lindfpropd (𝜑 → (𝑋 LIndF 𝐾𝑋 LIndF 𝐿))
Distinct variable groups:   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem lindfpropd
Dummy variables 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lindfpropd.2 . . . . . . . 8 (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿)))
2 lindfpropd.3 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))
32sneqd 4573 . . . . . . . 8 (𝜑 → {(0g‘(Scalar‘𝐾))} = {(0g‘(Scalar‘𝐿))})
41, 3difeq12d 4058 . . . . . . 7 (𝜑 → ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) = ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}))
54ad2antrr 723 . . . . . 6 (((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) = ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}))
6 simplll 772 . . . . . . . . 9 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → 𝜑)
7 simpr 485 . . . . . . . . . 10 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}))
87eldifad 3899 . . . . . . . . 9 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → 𝑘 ∈ (Base‘(Scalar‘𝐾)))
9 simpr 485 . . . . . . . . . . 11 ((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) → 𝑋:dom 𝑋⟶(Base‘𝐾))
109ffvelrnda 6961 . . . . . . . . . 10 (((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → (𝑋𝑖) ∈ (Base‘𝐾))
1110adantr 481 . . . . . . . . 9 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → (𝑋𝑖) ∈ (Base‘𝐾))
12 lindfpropd.6 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
1312oveqrspc2v 7302 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝐾)) ∧ (𝑋𝑖) ∈ (Base‘𝐾))) → (𝑘( ·𝑠𝐾)(𝑋𝑖)) = (𝑘( ·𝑠𝐿)(𝑋𝑖)))
146, 8, 11, 13syl12anc 834 . . . . . . . 8 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → (𝑘( ·𝑠𝐾)(𝑋𝑖)) = (𝑘( ·𝑠𝐿)(𝑋𝑖)))
15 eqidd 2739 . . . . . . . . . . 11 (𝜑 → (Base‘𝐾) = (Base‘𝐾))
16 lindfpropd.1 . . . . . . . . . . 11 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
17 ssidd 3944 . . . . . . . . . . 11 (𝜑 → (Base‘𝐾) ⊆ (Base‘𝐾))
18 lindfpropd.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
19 lindfpropd.5 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))
20 eqidd 2739 . . . . . . . . . . 11 (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾)))
21 lindfpropd.k . . . . . . . . . . 11 (𝜑𝐾𝑉)
22 lindfpropd.l . . . . . . . . . . 11 (𝜑𝐿𝑊)
2315, 16, 17, 18, 19, 12, 20, 1, 21, 22lsppropd 20280 . . . . . . . . . 10 (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿))
2423fveq1d 6776 . . . . . . . . 9 (𝜑 → ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) = ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))
2524ad3antrrr 727 . . . . . . . 8 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) = ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))
2614, 25eleq12d 2833 . . . . . . 7 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → ((𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))
2726notbid 318 . . . . . 6 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → (¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))
285, 27raleqbidva 3354 . . . . 5 (((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → (∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))
2928ralbidva 3111 . . . 4 ((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) → (∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))
3029pm5.32da 579 . . 3 (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
3116feq3d 6587 . . . 4 (𝜑 → (𝑋:dom 𝑋⟶(Base‘𝐾) ↔ 𝑋:dom 𝑋⟶(Base‘𝐿)))
3231anbi1d 630 . . 3 (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
3330, 32bitrd 278 . 2 (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
34 lindfpropd.x . . 3 (𝜑𝑋𝐴)
35 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
36 eqid 2738 . . . 4 ( ·𝑠𝐾) = ( ·𝑠𝐾)
37 eqid 2738 . . . 4 (LSpan‘𝐾) = (LSpan‘𝐾)
38 eqid 2738 . . . 4 (Scalar‘𝐾) = (Scalar‘𝐾)
39 eqid 2738 . . . 4 (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾))
40 eqid 2738 . . . 4 (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐾))
4135, 36, 37, 38, 39, 40islindf 21019 . . 3 ((𝐾𝑉𝑋𝐴) → (𝑋 LIndF 𝐾 ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
4221, 34, 41syl2anc 584 . 2 (𝜑 → (𝑋 LIndF 𝐾 ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
43 eqid 2738 . . . 4 (Base‘𝐿) = (Base‘𝐿)
44 eqid 2738 . . . 4 ( ·𝑠𝐿) = ( ·𝑠𝐿)
45 eqid 2738 . . . 4 (LSpan‘𝐿) = (LSpan‘𝐿)
46 eqid 2738 . . . 4 (Scalar‘𝐿) = (Scalar‘𝐿)
47 eqid 2738 . . . 4 (Base‘(Scalar‘𝐿)) = (Base‘(Scalar‘𝐿))
48 eqid 2738 . . . 4 (0g‘(Scalar‘𝐿)) = (0g‘(Scalar‘𝐿))
4943, 44, 45, 46, 47, 48islindf 21019 . . 3 ((𝐿𝑊𝑋𝐴) → (𝑋 LIndF 𝐿 ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
5022, 34, 49syl2anc 584 . 2 (𝜑 → (𝑋 LIndF 𝐿 ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
5133, 42, 503bitr4d 311 1 (𝜑 → (𝑋 LIndF 𝐾𝑋 LIndF 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cdif 3884  {csn 4561   class class class wbr 5074  dom cdm 5589  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  LSpanclspn 20233   LIndF clindf 21011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-lss 20194  df-lsp 20234  df-lindf 21013
This theorem is referenced by:  lindspropd  31577
  Copyright terms: Public domain W3C validator