Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindfpropd Structured version   Visualization version   GIF version

Theorem lindfpropd 30942
Description: Property deduction for linearly independent families. (Contributed by Thierry Arnoux, 16-Jul-2023.)
Hypotheses
Ref Expression
lindfpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
lindfpropd.2 (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿)))
lindfpropd.3 (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))
lindfpropd.4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lindfpropd.5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))
lindfpropd.6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
lindfpropd.k (𝜑𝐾𝑉)
lindfpropd.l (𝜑𝐿𝑊)
lindfpropd.x (𝜑𝑋𝐴)
Assertion
Ref Expression
lindfpropd (𝜑 → (𝑋 LIndF 𝐾𝑋 LIndF 𝐿))
Distinct variable groups:   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem lindfpropd
Dummy variables 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lindfpropd.2 . . . . . . . 8 (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿)))
2 lindfpropd.3 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))
32sneqd 4579 . . . . . . . 8 (𝜑 → {(0g‘(Scalar‘𝐾))} = {(0g‘(Scalar‘𝐿))})
41, 3difeq12d 4100 . . . . . . 7 (𝜑 → ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) = ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}))
54ad2antrr 724 . . . . . 6 (((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) = ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}))
6 simplll 773 . . . . . . . . 9 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → 𝜑)
7 simpr 487 . . . . . . . . . 10 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}))
87eldifad 3948 . . . . . . . . 9 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → 𝑘 ∈ (Base‘(Scalar‘𝐾)))
9 simpr 487 . . . . . . . . . . 11 ((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) → 𝑋:dom 𝑋⟶(Base‘𝐾))
109ffvelrnda 6851 . . . . . . . . . 10 (((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → (𝑋𝑖) ∈ (Base‘𝐾))
1110adantr 483 . . . . . . . . 9 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → (𝑋𝑖) ∈ (Base‘𝐾))
12 lindfpropd.6 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
1312oveqrspc2v 7183 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝐾)) ∧ (𝑋𝑖) ∈ (Base‘𝐾))) → (𝑘( ·𝑠𝐾)(𝑋𝑖)) = (𝑘( ·𝑠𝐿)(𝑋𝑖)))
146, 8, 11, 13syl12anc 834 . . . . . . . 8 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → (𝑘( ·𝑠𝐾)(𝑋𝑖)) = (𝑘( ·𝑠𝐿)(𝑋𝑖)))
15 eqidd 2822 . . . . . . . . . . 11 (𝜑 → (Base‘𝐾) = (Base‘𝐾))
16 lindfpropd.1 . . . . . . . . . . 11 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
17 ssidd 3990 . . . . . . . . . . 11 (𝜑 → (Base‘𝐾) ⊆ (Base‘𝐾))
18 lindfpropd.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
19 lindfpropd.5 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))
20 eqidd 2822 . . . . . . . . . . 11 (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾)))
21 lindfpropd.k . . . . . . . . . . . 12 (𝜑𝐾𝑉)
2221elexd 3514 . . . . . . . . . . 11 (𝜑𝐾 ∈ V)
23 lindfpropd.l . . . . . . . . . . . 12 (𝜑𝐿𝑊)
2423elexd 3514 . . . . . . . . . . 11 (𝜑𝐿 ∈ V)
2515, 16, 17, 18, 19, 12, 20, 1, 22, 24lsppropd 19790 . . . . . . . . . 10 (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿))
2625fveq1d 6672 . . . . . . . . 9 (𝜑 → ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) = ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))
2726ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) = ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))
2814, 27eleq12d 2907 . . . . . . 7 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → ((𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))
2928notbid 320 . . . . . 6 ((((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))})) → (¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))
305, 29raleqbidva 3425 . . . . 5 (((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → (∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))
3130ralbidva 3196 . . . 4 ((𝜑𝑋:dom 𝑋⟶(Base‘𝐾)) → (∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))
3231pm5.32da 581 . . 3 (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
3316feq3d 6501 . . . 4 (𝜑 → (𝑋:dom 𝑋⟶(Base‘𝐾) ↔ 𝑋:dom 𝑋⟶(Base‘𝐿)))
3433anbi1d 631 . . 3 (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
3532, 34bitrd 281 . 2 (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
36 lindfpropd.x . . 3 (𝜑𝑋𝐴)
37 eqid 2821 . . . 4 (Base‘𝐾) = (Base‘𝐾)
38 eqid 2821 . . . 4 ( ·𝑠𝐾) = ( ·𝑠𝐾)
39 eqid 2821 . . . 4 (LSpan‘𝐾) = (LSpan‘𝐾)
40 eqid 2821 . . . 4 (Scalar‘𝐾) = (Scalar‘𝐾)
41 eqid 2821 . . . 4 (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾))
42 eqid 2821 . . . 4 (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐾))
4337, 38, 39, 40, 41, 42islindf 20956 . . 3 ((𝐾𝑉𝑋𝐴) → (𝑋 LIndF 𝐾 ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
4421, 36, 43syl2anc 586 . 2 (𝜑 → (𝑋 LIndF 𝐾 ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖ {(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠𝐾)(𝑋𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
45 eqid 2821 . . . 4 (Base‘𝐿) = (Base‘𝐿)
46 eqid 2821 . . . 4 ( ·𝑠𝐿) = ( ·𝑠𝐿)
47 eqid 2821 . . . 4 (LSpan‘𝐿) = (LSpan‘𝐿)
48 eqid 2821 . . . 4 (Scalar‘𝐿) = (Scalar‘𝐿)
49 eqid 2821 . . . 4 (Base‘(Scalar‘𝐿)) = (Base‘(Scalar‘𝐿))
50 eqid 2821 . . . 4 (0g‘(Scalar‘𝐿)) = (0g‘(Scalar‘𝐿))
5145, 46, 47, 48, 49, 50islindf 20956 . . 3 ((𝐿𝑊𝑋𝐴) → (𝑋 LIndF 𝐿 ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
5223, 36, 51syl2anc 586 . 2 (𝜑 → (𝑋 LIndF 𝐿 ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖ {(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠𝐿)(𝑋𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))))
5335, 44, 523bitr4d 313 1 (𝜑 → (𝑋 LIndF 𝐾𝑋 LIndF 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  cdif 3933  {csn 4567   class class class wbr 5066  dom cdm 5555  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  LSpanclspn 19743   LIndF clindf 20948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-lss 19704  df-lsp 19744  df-lindf 20950
This theorem is referenced by:  lindspropd  30943
  Copyright terms: Public domain W3C validator