| Step | Hyp | Ref
| Expression |
| 1 | | lindfpropd.2 |
. . . . . . . 8
⊢ (𝜑 →
(Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) |
| 2 | | lindfpropd.3 |
. . . . . . . . 9
⊢ (𝜑 →
(0g‘(Scalar‘𝐾)) =
(0g‘(Scalar‘𝐿))) |
| 3 | 2 | sneqd 4618 |
. . . . . . . 8
⊢ (𝜑 →
{(0g‘(Scalar‘𝐾))} =
{(0g‘(Scalar‘𝐿))}) |
| 4 | 1, 3 | difeq12d 4107 |
. . . . . . 7
⊢ (𝜑 →
((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) = ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))})) |
| 5 | 4 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) = ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))})) |
| 6 | | simplll 774 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → 𝜑) |
| 7 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) |
| 8 | 7 | eldifad 3943 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → 𝑘 ∈ (Base‘(Scalar‘𝐾))) |
| 9 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) → 𝑋:dom 𝑋⟶(Base‘𝐾)) |
| 10 | 9 | ffvelcdmda 7079 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → (𝑋‘𝑖) ∈ (Base‘𝐾)) |
| 11 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → (𝑋‘𝑖) ∈ (Base‘𝐾)) |
| 12 | | lindfpropd.6 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦)) |
| 13 | 12 | oveqrspc2v 7437 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝐾)) ∧ (𝑋‘𝑖) ∈ (Base‘𝐾))) → (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) = (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖))) |
| 14 | 6, 8, 11, 13 | syl12anc 836 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) = (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖))) |
| 15 | | eqidd 2737 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) |
| 16 | | lindfpropd.1 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| 17 | | ssidd 3987 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐾) ⊆ (Base‘𝐾)) |
| 18 | | lindfpropd.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 19 | | lindfpropd.5 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠
‘𝐾)𝑦) ∈ (Base‘𝐾)) |
| 20 | | eqidd 2737 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾))) |
| 21 | | lindfpropd.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| 22 | | lindfpropd.l |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ 𝑊) |
| 23 | 15, 16, 17, 18, 19, 12, 20, 1, 21, 22 | lsppropd 20981 |
. . . . . . . . . 10
⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
| 24 | 23 | fveq1d 6883 |
. . . . . . . . 9
⊢ (𝜑 → ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) = ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) |
| 25 | 24 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) = ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) |
| 26 | 14, 25 | eleq12d 2829 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → ((𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) |
| 27 | 26 | notbid 318 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → (¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) |
| 28 | 5, 27 | raleqbidva 3315 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → (∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) |
| 29 | 28 | ralbidva 3162 |
. . . 4
⊢ ((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) → (∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) |
| 30 | 29 | pm5.32da 579 |
. . 3
⊢ (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
| 31 | 16 | feq3d 6698 |
. . . 4
⊢ (𝜑 → (𝑋:dom 𝑋⟶(Base‘𝐾) ↔ 𝑋:dom 𝑋⟶(Base‘𝐿))) |
| 32 | 31 | anbi1d 631 |
. . 3
⊢ (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
| 33 | 30, 32 | bitrd 279 |
. 2
⊢ (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
| 34 | | lindfpropd.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 35 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 36 | | eqid 2736 |
. . . 4
⊢ (
·𝑠 ‘𝐾) = ( ·𝑠
‘𝐾) |
| 37 | | eqid 2736 |
. . . 4
⊢
(LSpan‘𝐾) =
(LSpan‘𝐾) |
| 38 | | eqid 2736 |
. . . 4
⊢
(Scalar‘𝐾) =
(Scalar‘𝐾) |
| 39 | | eqid 2736 |
. . . 4
⊢
(Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾)) |
| 40 | | eqid 2736 |
. . . 4
⊢
(0g‘(Scalar‘𝐾)) =
(0g‘(Scalar‘𝐾)) |
| 41 | 35, 36, 37, 38, 39, 40 | islindf 21777 |
. . 3
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (𝑋 LIndF 𝐾 ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
| 42 | 21, 34, 41 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑋 LIndF 𝐾 ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
| 43 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 44 | | eqid 2736 |
. . . 4
⊢ (
·𝑠 ‘𝐿) = ( ·𝑠
‘𝐿) |
| 45 | | eqid 2736 |
. . . 4
⊢
(LSpan‘𝐿) =
(LSpan‘𝐿) |
| 46 | | eqid 2736 |
. . . 4
⊢
(Scalar‘𝐿) =
(Scalar‘𝐿) |
| 47 | | eqid 2736 |
. . . 4
⊢
(Base‘(Scalar‘𝐿)) = (Base‘(Scalar‘𝐿)) |
| 48 | | eqid 2736 |
. . . 4
⊢
(0g‘(Scalar‘𝐿)) =
(0g‘(Scalar‘𝐿)) |
| 49 | 43, 44, 45, 46, 47, 48 | islindf 21777 |
. . 3
⊢ ((𝐿 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → (𝑋 LIndF 𝐿 ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
| 50 | 22, 34, 49 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑋 LIndF 𝐿 ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
| 51 | 33, 42, 50 | 3bitr4d 311 |
1
⊢ (𝜑 → (𝑋 LIndF 𝐾 ↔ 𝑋 LIndF 𝐿)) |