Step | Hyp | Ref
| Expression |
1 | | lindfpropd.2 |
. . . . . . . 8
⊢ (𝜑 →
(Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) |
2 | | lindfpropd.3 |
. . . . . . . . 9
⊢ (𝜑 →
(0g‘(Scalar‘𝐾)) =
(0g‘(Scalar‘𝐿))) |
3 | 2 | sneqd 4573 |
. . . . . . . 8
⊢ (𝜑 →
{(0g‘(Scalar‘𝐾))} =
{(0g‘(Scalar‘𝐿))}) |
4 | 1, 3 | difeq12d 4058 |
. . . . . . 7
⊢ (𝜑 →
((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) = ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))})) |
5 | 4 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) = ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))})) |
6 | | simplll 772 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → 𝜑) |
7 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) |
8 | 7 | eldifad 3899 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → 𝑘 ∈ (Base‘(Scalar‘𝐾))) |
9 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) → 𝑋:dom 𝑋⟶(Base‘𝐾)) |
10 | 9 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → (𝑋‘𝑖) ∈ (Base‘𝐾)) |
11 | 10 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → (𝑋‘𝑖) ∈ (Base‘𝐾)) |
12 | | lindfpropd.6 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦)) |
13 | 12 | oveqrspc2v 7302 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝐾)) ∧ (𝑋‘𝑖) ∈ (Base‘𝐾))) → (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) = (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖))) |
14 | 6, 8, 11, 13 | syl12anc 834 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) = (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖))) |
15 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) |
16 | | lindfpropd.1 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
17 | | ssidd 3944 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐾) ⊆ (Base‘𝐾)) |
18 | | lindfpropd.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
19 | | lindfpropd.5 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠
‘𝐾)𝑦) ∈ (Base‘𝐾)) |
20 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾))) |
21 | | lindfpropd.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
22 | | lindfpropd.l |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ 𝑊) |
23 | 15, 16, 17, 18, 19, 12, 20, 1, 21, 22 | lsppropd 20280 |
. . . . . . . . . 10
⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
24 | 23 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝜑 → ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) = ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) |
25 | 24 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) = ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) |
26 | 14, 25 | eleq12d 2833 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → ((𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) |
27 | 26 | notbid 318 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → (¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) |
28 | 5, 27 | raleqbidva 3354 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → (∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) |
29 | 28 | ralbidva 3111 |
. . . 4
⊢ ((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) → (∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) |
30 | 29 | pm5.32da 579 |
. . 3
⊢ (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
31 | 16 | feq3d 6587 |
. . . 4
⊢ (𝜑 → (𝑋:dom 𝑋⟶(Base‘𝐾) ↔ 𝑋:dom 𝑋⟶(Base‘𝐿))) |
32 | 31 | anbi1d 630 |
. . 3
⊢ (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
33 | 30, 32 | bitrd 278 |
. 2
⊢ (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
34 | | lindfpropd.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
35 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
36 | | eqid 2738 |
. . . 4
⊢ (
·𝑠 ‘𝐾) = ( ·𝑠
‘𝐾) |
37 | | eqid 2738 |
. . . 4
⊢
(LSpan‘𝐾) =
(LSpan‘𝐾) |
38 | | eqid 2738 |
. . . 4
⊢
(Scalar‘𝐾) =
(Scalar‘𝐾) |
39 | | eqid 2738 |
. . . 4
⊢
(Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾)) |
40 | | eqid 2738 |
. . . 4
⊢
(0g‘(Scalar‘𝐾)) =
(0g‘(Scalar‘𝐾)) |
41 | 35, 36, 37, 38, 39, 40 | islindf 21019 |
. . 3
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (𝑋 LIndF 𝐾 ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
42 | 21, 34, 41 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑋 LIndF 𝐾 ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
43 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐿) =
(Base‘𝐿) |
44 | | eqid 2738 |
. . . 4
⊢ (
·𝑠 ‘𝐿) = ( ·𝑠
‘𝐿) |
45 | | eqid 2738 |
. . . 4
⊢
(LSpan‘𝐿) =
(LSpan‘𝐿) |
46 | | eqid 2738 |
. . . 4
⊢
(Scalar‘𝐿) =
(Scalar‘𝐿) |
47 | | eqid 2738 |
. . . 4
⊢
(Base‘(Scalar‘𝐿)) = (Base‘(Scalar‘𝐿)) |
48 | | eqid 2738 |
. . . 4
⊢
(0g‘(Scalar‘𝐿)) =
(0g‘(Scalar‘𝐿)) |
49 | 43, 44, 45, 46, 47, 48 | islindf 21019 |
. . 3
⊢ ((𝐿 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → (𝑋 LIndF 𝐿 ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
50 | 22, 34, 49 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑋 LIndF 𝐿 ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) |
51 | 33, 42, 50 | 3bitr4d 311 |
1
⊢ (𝜑 → (𝑋 LIndF 𝐾 ↔ 𝑋 LIndF 𝐿)) |