| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lindfpropd.2 | . . . . . . . 8
⊢ (𝜑 →
(Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) | 
| 2 |  | lindfpropd.3 | . . . . . . . . 9
⊢ (𝜑 →
(0g‘(Scalar‘𝐾)) =
(0g‘(Scalar‘𝐿))) | 
| 3 | 2 | sneqd 4638 | . . . . . . . 8
⊢ (𝜑 →
{(0g‘(Scalar‘𝐾))} =
{(0g‘(Scalar‘𝐿))}) | 
| 4 | 1, 3 | difeq12d 4127 | . . . . . . 7
⊢ (𝜑 →
((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) = ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))})) | 
| 5 | 4 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) = ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))})) | 
| 6 |  | simplll 775 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → 𝜑) | 
| 7 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) | 
| 8 | 7 | eldifad 3963 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → 𝑘 ∈ (Base‘(Scalar‘𝐾))) | 
| 9 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) → 𝑋:dom 𝑋⟶(Base‘𝐾)) | 
| 10 | 9 | ffvelcdmda 7104 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → (𝑋‘𝑖) ∈ (Base‘𝐾)) | 
| 11 | 10 | adantr 480 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → (𝑋‘𝑖) ∈ (Base‘𝐾)) | 
| 12 |  | lindfpropd.6 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦)) | 
| 13 | 12 | oveqrspc2v 7458 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝐾)) ∧ (𝑋‘𝑖) ∈ (Base‘𝐾))) → (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) = (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖))) | 
| 14 | 6, 8, 11, 13 | syl12anc 837 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) = (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖))) | 
| 15 |  | eqidd 2738 | . . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | 
| 16 |  | lindfpropd.1 | . . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | 
| 17 |  | ssidd 4007 | . . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐾) ⊆ (Base‘𝐾)) | 
| 18 |  | lindfpropd.4 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | 
| 19 |  | lindfpropd.5 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠
‘𝐾)𝑦) ∈ (Base‘𝐾)) | 
| 20 |  | eqidd 2738 | . . . . . . . . . . 11
⊢ (𝜑 →
(Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾))) | 
| 21 |  | lindfpropd.k | . . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ 𝑉) | 
| 22 |  | lindfpropd.l | . . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ 𝑊) | 
| 23 | 15, 16, 17, 18, 19, 12, 20, 1, 21, 22 | lsppropd 21017 | . . . . . . . . . 10
⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) | 
| 24 | 23 | fveq1d 6908 | . . . . . . . . 9
⊢ (𝜑 → ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) = ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) | 
| 25 | 24 | ad3antrrr 730 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) = ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) | 
| 26 | 14, 25 | eleq12d 2835 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → ((𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) | 
| 27 | 26 | notbid 318 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))})) → (¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) | 
| 28 | 5, 27 | raleqbidva 3332 | . . . . 5
⊢ (((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) ∧ 𝑖 ∈ dom 𝑋) → (∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) | 
| 29 | 28 | ralbidva 3176 | . . . 4
⊢ ((𝜑 ∧ 𝑋:dom 𝑋⟶(Base‘𝐾)) → (∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))) ↔ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖}))))) | 
| 30 | 29 | pm5.32da 579 | . . 3
⊢ (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) | 
| 31 | 16 | feq3d 6723 | . . . 4
⊢ (𝜑 → (𝑋:dom 𝑋⟶(Base‘𝐾) ↔ 𝑋:dom 𝑋⟶(Base‘𝐿))) | 
| 32 | 31 | anbi1d 631 | . . 3
⊢ (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) | 
| 33 | 30, 32 | bitrd 279 | . 2
⊢ (𝜑 → ((𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))) ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) | 
| 34 |  | lindfpropd.x | . . 3
⊢ (𝜑 → 𝑋 ∈ 𝐴) | 
| 35 |  | eqid 2737 | . . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 36 |  | eqid 2737 | . . . 4
⊢ (
·𝑠 ‘𝐾) = ( ·𝑠
‘𝐾) | 
| 37 |  | eqid 2737 | . . . 4
⊢
(LSpan‘𝐾) =
(LSpan‘𝐾) | 
| 38 |  | eqid 2737 | . . . 4
⊢
(Scalar‘𝐾) =
(Scalar‘𝐾) | 
| 39 |  | eqid 2737 | . . . 4
⊢
(Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾)) | 
| 40 |  | eqid 2737 | . . . 4
⊢
(0g‘(Scalar‘𝐾)) =
(0g‘(Scalar‘𝐾)) | 
| 41 | 35, 36, 37, 38, 39, 40 | islindf 21832 | . . 3
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (𝑋 LIndF 𝐾 ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) | 
| 42 | 21, 34, 41 | syl2anc 584 | . 2
⊢ (𝜑 → (𝑋 LIndF 𝐾 ↔ (𝑋:dom 𝑋⟶(Base‘𝐾) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐾)) ∖
{(0g‘(Scalar‘𝐾))}) ¬ (𝑘( ·𝑠
‘𝐾)(𝑋‘𝑖)) ∈ ((LSpan‘𝐾)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) | 
| 43 |  | eqid 2737 | . . . 4
⊢
(Base‘𝐿) =
(Base‘𝐿) | 
| 44 |  | eqid 2737 | . . . 4
⊢ (
·𝑠 ‘𝐿) = ( ·𝑠
‘𝐿) | 
| 45 |  | eqid 2737 | . . . 4
⊢
(LSpan‘𝐿) =
(LSpan‘𝐿) | 
| 46 |  | eqid 2737 | . . . 4
⊢
(Scalar‘𝐿) =
(Scalar‘𝐿) | 
| 47 |  | eqid 2737 | . . . 4
⊢
(Base‘(Scalar‘𝐿)) = (Base‘(Scalar‘𝐿)) | 
| 48 |  | eqid 2737 | . . . 4
⊢
(0g‘(Scalar‘𝐿)) =
(0g‘(Scalar‘𝐿)) | 
| 49 | 43, 44, 45, 46, 47, 48 | islindf 21832 | . . 3
⊢ ((𝐿 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → (𝑋 LIndF 𝐿 ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) | 
| 50 | 22, 34, 49 | syl2anc 584 | . 2
⊢ (𝜑 → (𝑋 LIndF 𝐿 ↔ (𝑋:dom 𝑋⟶(Base‘𝐿) ∧ ∀𝑖 ∈ dom 𝑋∀𝑘 ∈ ((Base‘(Scalar‘𝐿)) ∖
{(0g‘(Scalar‘𝐿))}) ¬ (𝑘( ·𝑠
‘𝐿)(𝑋‘𝑖)) ∈ ((LSpan‘𝐿)‘(𝑋 “ (dom 𝑋 ∖ {𝑖})))))) | 
| 51 | 33, 42, 50 | 3bitr4d 311 | 1
⊢ (𝜑 → (𝑋 LIndF 𝐾 ↔ 𝑋 LIndF 𝐿)) |