| Step | Hyp | Ref
| Expression |
| 1 | | opprqus.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
| 2 | | opprqus.o |
. . . . . . . 8
⊢ 𝑂 =
(oppr‘𝑅) |
| 3 | | opprqus.q |
. . . . . . . 8
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 4 | | opprqus.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 5 | 4 | elfvexd 6920 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ V) |
| 6 | | nsgsubg 19146 |
. . . . . . . . 9
⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) |
| 7 | 1 | subgss 19115 |
. . . . . . . . 9
⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ⊆ 𝐵) |
| 8 | 4, 6, 7 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
| 9 | 1, 2, 3, 5, 8 | opprqusbas 33508 |
. . . . . . 7
⊢ (𝜑 →
(Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| 10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) →
(Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| 11 | 4 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 12 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝑄) =
(Base‘𝑄) |
| 13 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) → 𝑒 ∈
(Base‘(oppr‘𝑄))) |
| 14 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(oppr‘𝑄) = (oppr‘𝑄) |
| 15 | 14, 12 | opprbas 20308 |
. . . . . . . . . . . 12
⊢
(Base‘𝑄) =
(Base‘(oppr‘𝑄)) |
| 16 | 15 | eqcomi 2745 |
. . . . . . . . . . 11
⊢
(Base‘(oppr‘𝑄)) = (Base‘𝑄) |
| 17 | 13, 16 | eleqtrdi 2845 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) → 𝑒 ∈ (Base‘𝑄)) |
| 18 | 17 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → 𝑒 ∈ (Base‘𝑄)) |
| 19 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → 𝑥 ∈
(Base‘(oppr‘𝑄))) |
| 20 | 19, 16 | eleqtrdi 2845 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → 𝑥 ∈ (Base‘𝑄)) |
| 21 | 20 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → 𝑥 ∈ (Base‘𝑄)) |
| 22 | 1, 2, 3, 11, 12, 18, 21 | opprqusplusg 33509 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → (𝑒(+g‘(oppr‘𝑄))𝑥) = (𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥)) |
| 23 | 22 | eqeq1d 2738 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → ((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ↔ (𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥)) |
| 24 | 1, 2, 3, 11, 12, 21, 18 | opprqusplusg 33509 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → (𝑥(+g‘(oppr‘𝑄))𝑒) = (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒)) |
| 25 | 24 | eqeq1d 2738 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → ((𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥 ↔ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)) |
| 26 | 23, 25 | anbi12d 632 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → (((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥) ↔ ((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥))) |
| 27 | 10, 26 | raleqbidva 3315 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) → (∀𝑥 ∈
(Base‘(oppr‘𝑄))((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥))) |
| 28 | 27 | pm5.32da 579 |
. . . 4
⊢ (𝜑 → ((𝑒 ∈
(Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈
(Base‘(oppr‘𝑄))((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)))) |
| 29 | 9 | eleq2d 2821 |
. . . . 5
⊢ (𝜑 → (𝑒 ∈
(Base‘(oppr‘𝑄)) ↔ 𝑒 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼))))) |
| 30 | 29 | anbi1d 631 |
. . . 4
⊢ (𝜑 → ((𝑒 ∈
(Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)))) |
| 31 | 28, 30 | bitrd 279 |
. . 3
⊢ (𝜑 → ((𝑒 ∈
(Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈
(Base‘(oppr‘𝑄))((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)))) |
| 32 | 31 | iotabidv 6520 |
. 2
⊢ (𝜑 → (℩𝑒(𝑒 ∈
(Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈
(Base‘(oppr‘𝑄))((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥))) = (℩𝑒(𝑒
∈ (Base‘(𝑂
/s (𝑂
~QG 𝐼))) ∧
∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)))) |
| 33 | | eqid 2736 |
. . . . 5
⊢
(+g‘𝑄) = (+g‘𝑄) |
| 34 | 14, 33 | oppradd 20309 |
. . . 4
⊢
(+g‘𝑄) =
(+g‘(oppr‘𝑄)) |
| 35 | 34 | eqcomi 2745 |
. . 3
⊢
(+g‘(oppr‘𝑄)) = (+g‘𝑄) |
| 36 | | eqid 2736 |
. . . . 5
⊢
(0g‘𝑄) = (0g‘𝑄) |
| 37 | 14, 36 | oppr0 20314 |
. . . 4
⊢
(0g‘𝑄) =
(0g‘(oppr‘𝑄)) |
| 38 | 37 | eqcomi 2745 |
. . 3
⊢
(0g‘(oppr‘𝑄)) = (0g‘𝑄) |
| 39 | 16, 35, 38 | grpidval 18644 |
. 2
⊢
(0g‘(oppr‘𝑄)) = (℩𝑒(𝑒 ∈
(Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈
(Base‘(oppr‘𝑄))((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥))) |
| 40 | | eqid 2736 |
. . 3
⊢
(Base‘(𝑂
/s (𝑂
~QG 𝐼)))
= (Base‘(𝑂
/s (𝑂
~QG 𝐼))) |
| 41 | | eqid 2736 |
. . 3
⊢
(+g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (+g‘(𝑂 /s (𝑂 ~QG 𝐼))) |
| 42 | | eqid 2736 |
. . 3
⊢
(0g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼))) |
| 43 | 40, 41, 42 | grpidval 18644 |
. 2
⊢
(0g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (℩𝑒(𝑒 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥))) |
| 44 | 32, 39, 43 | 3eqtr4g 2796 |
1
⊢ (𝜑 →
(0g‘(oppr‘𝑄)) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼)))) |