| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | opprqus.b | . . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) | 
| 2 |  | opprqus.o | . . . . . . . 8
⊢ 𝑂 =
(oppr‘𝑅) | 
| 3 |  | opprqus.q | . . . . . . . 8
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | 
| 4 |  | opprqus.i | . . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) | 
| 5 | 4 | elfvexd 6944 | . . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ V) | 
| 6 |  | nsgsubg 19177 | . . . . . . . . 9
⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | 
| 7 | 1 | subgss 19146 | . . . . . . . . 9
⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ⊆ 𝐵) | 
| 8 | 4, 6, 7 | 3syl 18 | . . . . . . . 8
⊢ (𝜑 → 𝐼 ⊆ 𝐵) | 
| 9 | 1, 2, 3, 5, 8 | opprqusbas 33517 | . . . . . . 7
⊢ (𝜑 →
(Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) | 
| 10 | 9 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) →
(Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) | 
| 11 | 4 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → 𝐼 ∈ (NrmSGrp‘𝑅)) | 
| 12 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘𝑄) =
(Base‘𝑄) | 
| 13 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) → 𝑒 ∈
(Base‘(oppr‘𝑄))) | 
| 14 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(oppr‘𝑄) = (oppr‘𝑄) | 
| 15 | 14, 12 | opprbas 20342 | . . . . . . . . . . . 12
⊢
(Base‘𝑄) =
(Base‘(oppr‘𝑄)) | 
| 16 | 15 | eqcomi 2745 | . . . . . . . . . . 11
⊢
(Base‘(oppr‘𝑄)) = (Base‘𝑄) | 
| 17 | 13, 16 | eleqtrdi 2850 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) → 𝑒 ∈ (Base‘𝑄)) | 
| 18 | 17 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → 𝑒 ∈ (Base‘𝑄)) | 
| 19 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → 𝑥 ∈
(Base‘(oppr‘𝑄))) | 
| 20 | 19, 16 | eleqtrdi 2850 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → 𝑥 ∈ (Base‘𝑄)) | 
| 21 | 20 | adantlr 715 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → 𝑥 ∈ (Base‘𝑄)) | 
| 22 | 1, 2, 3, 11, 12, 18, 21 | opprqusplusg 33518 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → (𝑒(+g‘(oppr‘𝑄))𝑥) = (𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥)) | 
| 23 | 22 | eqeq1d 2738 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → ((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ↔ (𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥)) | 
| 24 | 1, 2, 3, 11, 12, 21, 18 | opprqusplusg 33518 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → (𝑥(+g‘(oppr‘𝑄))𝑒) = (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒)) | 
| 25 | 24 | eqeq1d 2738 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → ((𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥 ↔ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)) | 
| 26 | 23, 25 | anbi12d 632 | . . . . . 6
⊢ (((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) ∧ 𝑥 ∈
(Base‘(oppr‘𝑄))) → (((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥) ↔ ((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥))) | 
| 27 | 10, 26 | raleqbidva 3331 | . . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈
(Base‘(oppr‘𝑄))) → (∀𝑥 ∈
(Base‘(oppr‘𝑄))((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥))) | 
| 28 | 27 | pm5.32da 579 | . . . 4
⊢ (𝜑 → ((𝑒 ∈
(Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈
(Base‘(oppr‘𝑄))((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)))) | 
| 29 | 9 | eleq2d 2826 | . . . . 5
⊢ (𝜑 → (𝑒 ∈
(Base‘(oppr‘𝑄)) ↔ 𝑒 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼))))) | 
| 30 | 29 | anbi1d 631 | . . . 4
⊢ (𝜑 → ((𝑒 ∈
(Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)))) | 
| 31 | 28, 30 | bitrd 279 | . . 3
⊢ (𝜑 → ((𝑒 ∈
(Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈
(Base‘(oppr‘𝑄))((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)))) | 
| 32 | 31 | iotabidv 6544 | . 2
⊢ (𝜑 → (℩𝑒(𝑒 ∈
(Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈
(Base‘(oppr‘𝑄))((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥))) = (℩𝑒(𝑒
∈ (Base‘(𝑂
/s (𝑂
~QG 𝐼))) ∧
∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥)))) | 
| 33 |  | eqid 2736 | . . . . 5
⊢
(+g‘𝑄) = (+g‘𝑄) | 
| 34 | 14, 33 | oppradd 20344 | . . . 4
⊢
(+g‘𝑄) =
(+g‘(oppr‘𝑄)) | 
| 35 | 34 | eqcomi 2745 | . . 3
⊢
(+g‘(oppr‘𝑄)) = (+g‘𝑄) | 
| 36 |  | eqid 2736 | . . . . 5
⊢
(0g‘𝑄) = (0g‘𝑄) | 
| 37 | 14, 36 | oppr0 20350 | . . . 4
⊢
(0g‘𝑄) =
(0g‘(oppr‘𝑄)) | 
| 38 | 37 | eqcomi 2745 | . . 3
⊢
(0g‘(oppr‘𝑄)) = (0g‘𝑄) | 
| 39 | 16, 35, 38 | grpidval 18675 | . 2
⊢
(0g‘(oppr‘𝑄)) = (℩𝑒(𝑒 ∈
(Base‘(oppr‘𝑄)) ∧ ∀𝑥 ∈
(Base‘(oppr‘𝑄))((𝑒(+g‘(oppr‘𝑄))𝑥) = 𝑥 ∧ (𝑥(+g‘(oppr‘𝑄))𝑒) = 𝑥))) | 
| 40 |  | eqid 2736 | . . 3
⊢
(Base‘(𝑂
/s (𝑂
~QG 𝐼)))
= (Base‘(𝑂
/s (𝑂
~QG 𝐼))) | 
| 41 |  | eqid 2736 | . . 3
⊢
(+g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (+g‘(𝑂 /s (𝑂 ~QG 𝐼))) | 
| 42 |  | eqid 2736 | . . 3
⊢
(0g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼))) | 
| 43 | 40, 41, 42 | grpidval 18675 | . 2
⊢
(0g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (℩𝑒(𝑒 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑒(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = 𝑥 ∧ (𝑥(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑒) = 𝑥))) | 
| 44 | 32, 39, 43 | 3eqtr4g 2801 | 1
⊢ (𝜑 →
(0g‘(oppr‘𝑄)) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼)))) |