MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidpropd Structured version   Visualization version   GIF version

Theorem cidpropd 17768
Description: Two structures with the same base, hom-sets and composition operation have the same identity function. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
catpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
catpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
catpropd.3 (𝜑𝐶𝑉)
catpropd.4 (𝜑𝐷𝑊)
Assertion
Ref Expression
cidpropd (𝜑 → (Id‘𝐶) = (Id‘𝐷))

Proof of Theorem cidpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catpropd.1 . . . . . 6 (𝜑 → (Homf𝐶) = (Homf𝐷))
21homfeqbas 17754 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
32adantr 480 . . . 4 ((𝜑𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐷))
4 eqid 2740 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2740 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2740 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
71ad4antr 731 . . . . . . . . . 10 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
8 simpr 484 . . . . . . . . . 10 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
9 simpllr 775 . . . . . . . . . 10 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
104, 5, 6, 7, 8, 9homfeqval 17755 . . . . . . . . 9 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐷)𝑥))
11 eqid 2740 . . . . . . . . . . 11 (comp‘𝐶) = (comp‘𝐶)
12 eqid 2740 . . . . . . . . . . 11 (comp‘𝐷) = (comp‘𝐷)
131ad5antr 733 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (Homf𝐶) = (Homf𝐷))
14 catpropd.2 . . . . . . . . . . . 12 (𝜑 → (compf𝐶) = (compf𝐷))
1514ad5antr 733 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (compf𝐶) = (compf𝐷))
16 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑦 ∈ (Base‘𝐶))
17 simp-4r 783 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶))
18 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
19 simpllr 775 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥))
204, 5, 11, 12, 13, 15, 16, 17, 17, 18, 19comfeqval 17766 . . . . . . . . . 10 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓))
2120eqeq1d 2742 . . . . . . . . 9 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓))
2210, 21raleqbidva 3340 . . . . . . . 8 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓))
234, 5, 6, 7, 9, 8homfeqval 17755 . . . . . . . . 9 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
247adantr 480 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Homf𝐶) = (Homf𝐷))
2514ad5antr 733 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (compf𝐶) = (compf𝐷))
269adantr 480 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
27 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
28 simpllr 775 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥))
29 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
304, 5, 11, 12, 24, 25, 26, 26, 27, 28, 29comfeqval 17766 . . . . . . . . . 10 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔))
3130eqeq1d 2742 . . . . . . . . 9 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))
3223, 31raleqbidva 3340 . . . . . . . 8 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))
3322, 32anbi12d 631 . . . . . . 7 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → ((∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
3433ralbidva 3182 . . . . . 6 ((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
3534riotabidva 7424 . . . . 5 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
361ad2antrr 725 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
37 simpr 484 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
384, 5, 6, 36, 37, 37homfeqval 17755 . . . . . 6 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥(Hom ‘𝐷)𝑥))
392ad2antrr 725 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
4039raleqdv 3334 . . . . . 6 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
4138, 40riotaeqbidv 7407 . . . . 5 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
4235, 41eqtrd 2780 . . . 4 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
433, 42mpteq12dva 5255 . . 3 ((𝜑𝐶 ∈ Cat) → (𝑥 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))))
44 simpr 484 . . . 4 ((𝜑𝐶 ∈ Cat) → 𝐶 ∈ Cat)
45 eqid 2740 . . . 4 (Id‘𝐶) = (Id‘𝐶)
464, 5, 11, 44, 45cidfval 17734 . . 3 ((𝜑𝐶 ∈ Cat) → (Id‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))))
47 eqid 2740 . . . 4 (Base‘𝐷) = (Base‘𝐷)
48 catpropd.3 . . . . . 6 (𝜑𝐶𝑉)
49 catpropd.4 . . . . . 6 (𝜑𝐷𝑊)
501, 14, 48, 49catpropd 17767 . . . . 5 (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
5150biimpa 476 . . . 4 ((𝜑𝐶 ∈ Cat) → 𝐷 ∈ Cat)
52 eqid 2740 . . . 4 (Id‘𝐷) = (Id‘𝐷)
5347, 6, 12, 51, 52cidfval 17734 . . 3 ((𝜑𝐶 ∈ Cat) → (Id‘𝐷) = (𝑥 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))))
5443, 46, 533eqtr4d 2790 . 2 ((𝜑𝐶 ∈ Cat) → (Id‘𝐶) = (Id‘𝐷))
55 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐶 ∈ Cat)
56 cidffn 17736 . . . . . . 7 Id Fn Cat
5756fndmi 6683 . . . . . 6 dom Id = Cat
5857eleq2i 2836 . . . . 5 (𝐶 ∈ dom Id ↔ 𝐶 ∈ Cat)
5955, 58sylnibr 329 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐶 ∈ dom Id)
60 ndmfv 6955 . . . 4 𝐶 ∈ dom Id → (Id‘𝐶) = ∅)
6159, 60syl 17 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐶) = ∅)
6257eleq2i 2836 . . . . . . 7 (𝐷 ∈ dom Id ↔ 𝐷 ∈ Cat)
6350, 62bitr4di 289 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ dom Id))
6463notbid 318 . . . . 5 (𝜑 → (¬ 𝐶 ∈ Cat ↔ ¬ 𝐷 ∈ dom Id))
6564biimpa 476 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐷 ∈ dom Id)
66 ndmfv 6955 . . . 4 𝐷 ∈ dom Id → (Id‘𝐷) = ∅)
6765, 66syl 17 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐷) = ∅)
6861, 67eqtr4d 2783 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐶) = (Id‘𝐷))
6954, 68pm2.61dan 812 1 (𝜑 → (Id‘𝐶) = (Id‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  c0 4352  cop 4654  cmpt 5249  dom cdm 5700  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723  Homf chomf 17724  compfccomf 17725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-cat 17726  df-cid 17727  df-homf 17728  df-comf 17729
This theorem is referenced by:  funcpropd  17967  curfpropd  18303
  Copyright terms: Public domain W3C validator