MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidpropd Structured version   Visualization version   GIF version

Theorem cidpropd 17611
Description: Two structures with the same base, hom-sets and composition operation have the same identity function. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
catpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
catpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
catpropd.3 (𝜑𝐶𝑉)
catpropd.4 (𝜑𝐷𝑊)
Assertion
Ref Expression
cidpropd (𝜑 → (Id‘𝐶) = (Id‘𝐷))

Proof of Theorem cidpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catpropd.1 . . . . . 6 (𝜑 → (Homf𝐶) = (Homf𝐷))
21homfeqbas 17597 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
32adantr 480 . . . 4 ((𝜑𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐷))
4 eqid 2731 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2731 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2731 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
71ad4antr 732 . . . . . . . . . 10 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
8 simpr 484 . . . . . . . . . 10 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
9 simpllr 775 . . . . . . . . . 10 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
104, 5, 6, 7, 8, 9homfeqval 17598 . . . . . . . . 9 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐷)𝑥))
11 eqid 2731 . . . . . . . . . . 11 (comp‘𝐶) = (comp‘𝐶)
12 eqid 2731 . . . . . . . . . . 11 (comp‘𝐷) = (comp‘𝐷)
131ad5antr 734 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (Homf𝐶) = (Homf𝐷))
14 catpropd.2 . . . . . . . . . . . 12 (𝜑 → (compf𝐶) = (compf𝐷))
1514ad5antr 734 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (compf𝐶) = (compf𝐷))
16 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑦 ∈ (Base‘𝐶))
17 simp-4r 783 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶))
18 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
19 simpllr 775 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥))
204, 5, 11, 12, 13, 15, 16, 17, 17, 18, 19comfeqval 17609 . . . . . . . . . 10 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓))
2120eqeq1d 2733 . . . . . . . . 9 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓))
2210, 21raleqbidva 3298 . . . . . . . 8 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓))
234, 5, 6, 7, 9, 8homfeqval 17598 . . . . . . . . 9 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
247adantr 480 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Homf𝐶) = (Homf𝐷))
2514ad5antr 734 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (compf𝐶) = (compf𝐷))
269adantr 480 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
27 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
28 simpllr 775 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥))
29 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
304, 5, 11, 12, 24, 25, 26, 26, 27, 28, 29comfeqval 17609 . . . . . . . . . 10 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔))
3130eqeq1d 2733 . . . . . . . . 9 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))
3223, 31raleqbidva 3298 . . . . . . . 8 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))
3322, 32anbi12d 632 . . . . . . 7 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → ((∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
3433ralbidva 3153 . . . . . 6 ((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
3534riotabidva 7317 . . . . 5 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
361ad2antrr 726 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
37 simpr 484 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
384, 5, 6, 36, 37, 37homfeqval 17598 . . . . . 6 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥(Hom ‘𝐷)𝑥))
392ad2antrr 726 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
4039raleqdv 3292 . . . . . 6 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
4138, 40riotaeqbidv 7301 . . . . 5 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
4235, 41eqtrd 2766 . . . 4 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
433, 42mpteq12dva 5172 . . 3 ((𝜑𝐶 ∈ Cat) → (𝑥 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))))
44 simpr 484 . . . 4 ((𝜑𝐶 ∈ Cat) → 𝐶 ∈ Cat)
45 eqid 2731 . . . 4 (Id‘𝐶) = (Id‘𝐶)
464, 5, 11, 44, 45cidfval 17577 . . 3 ((𝜑𝐶 ∈ Cat) → (Id‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))))
47 eqid 2731 . . . 4 (Base‘𝐷) = (Base‘𝐷)
48 catpropd.3 . . . . . 6 (𝜑𝐶𝑉)
49 catpropd.4 . . . . . 6 (𝜑𝐷𝑊)
501, 14, 48, 49catpropd 17610 . . . . 5 (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
5150biimpa 476 . . . 4 ((𝜑𝐶 ∈ Cat) → 𝐷 ∈ Cat)
52 eqid 2731 . . . 4 (Id‘𝐷) = (Id‘𝐷)
5347, 6, 12, 51, 52cidfval 17577 . . 3 ((𝜑𝐶 ∈ Cat) → (Id‘𝐷) = (𝑥 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))))
5443, 46, 533eqtr4d 2776 . 2 ((𝜑𝐶 ∈ Cat) → (Id‘𝐶) = (Id‘𝐷))
55 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐶 ∈ Cat)
56 cidffn 17579 . . . . . . 7 Id Fn Cat
5756fndmi 6580 . . . . . 6 dom Id = Cat
5857eleq2i 2823 . . . . 5 (𝐶 ∈ dom Id ↔ 𝐶 ∈ Cat)
5955, 58sylnibr 329 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐶 ∈ dom Id)
60 ndmfv 6849 . . . 4 𝐶 ∈ dom Id → (Id‘𝐶) = ∅)
6159, 60syl 17 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐶) = ∅)
6257eleq2i 2823 . . . . . . 7 (𝐷 ∈ dom Id ↔ 𝐷 ∈ Cat)
6350, 62bitr4di 289 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ dom Id))
6463notbid 318 . . . . 5 (𝜑 → (¬ 𝐶 ∈ Cat ↔ ¬ 𝐷 ∈ dom Id))
6564biimpa 476 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐷 ∈ dom Id)
66 ndmfv 6849 . . . 4 𝐷 ∈ dom Id → (Id‘𝐷) = ∅)
6765, 66syl 17 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐷) = ∅)
6861, 67eqtr4d 2769 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐶) = (Id‘𝐷))
6954, 68pm2.61dan 812 1 (𝜑 → (Id‘𝐶) = (Id‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  c0 4278  cop 4577  cmpt 5167  dom cdm 5611  cfv 6476  crio 7297  (class class class)co 7341  Basecbs 17115  Hom chom 17167  compcco 17168  Catccat 17565  Idccid 17566  Homf chomf 17567  compfccomf 17568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-cat 17569  df-cid 17570  df-homf 17571  df-comf 17572
This theorem is referenced by:  funcpropd  17804  curfpropd  18134  sectpropdlem  49068
  Copyright terms: Public domain W3C validator