MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidpropd Structured version   Visualization version   GIF version

Theorem cidpropd 17671
Description: Two structures with the same base, hom-sets and composition operation have the same identity function. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
catpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
catpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
catpropd.3 (𝜑𝐶𝑉)
catpropd.4 (𝜑𝐷𝑊)
Assertion
Ref Expression
cidpropd (𝜑 → (Id‘𝐶) = (Id‘𝐷))

Proof of Theorem cidpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catpropd.1 . . . . . 6 (𝜑 → (Homf𝐶) = (Homf𝐷))
21homfeqbas 17657 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
32adantr 480 . . . 4 ((𝜑𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐷))
4 eqid 2729 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
71ad4antr 732 . . . . . . . . . 10 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
8 simpr 484 . . . . . . . . . 10 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
9 simpllr 775 . . . . . . . . . 10 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
104, 5, 6, 7, 8, 9homfeqval 17658 . . . . . . . . 9 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐷)𝑥))
11 eqid 2729 . . . . . . . . . . 11 (comp‘𝐶) = (comp‘𝐶)
12 eqid 2729 . . . . . . . . . . 11 (comp‘𝐷) = (comp‘𝐷)
131ad5antr 734 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (Homf𝐶) = (Homf𝐷))
14 catpropd.2 . . . . . . . . . . . 12 (𝜑 → (compf𝐶) = (compf𝐷))
1514ad5antr 734 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (compf𝐶) = (compf𝐷))
16 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑦 ∈ (Base‘𝐶))
17 simp-4r 783 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶))
18 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
19 simpllr 775 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥))
204, 5, 11, 12, 13, 15, 16, 17, 17, 18, 19comfeqval 17669 . . . . . . . . . 10 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓))
2120eqeq1d 2731 . . . . . . . . 9 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓))
2210, 21raleqbidva 3305 . . . . . . . 8 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓))
234, 5, 6, 7, 9, 8homfeqval 17658 . . . . . . . . 9 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
247adantr 480 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Homf𝐶) = (Homf𝐷))
2514ad5antr 734 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (compf𝐶) = (compf𝐷))
269adantr 480 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
27 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
28 simpllr 775 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥))
29 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
304, 5, 11, 12, 24, 25, 26, 26, 27, 28, 29comfeqval 17669 . . . . . . . . . 10 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔))
3130eqeq1d 2731 . . . . . . . . 9 ((((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))
3223, 31raleqbidva 3305 . . . . . . . 8 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))
3322, 32anbi12d 632 . . . . . . 7 (((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → ((∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
3433ralbidva 3154 . . . . . 6 ((((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
3534riotabidva 7363 . . . . 5 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
361ad2antrr 726 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
37 simpr 484 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
384, 5, 6, 36, 37, 37homfeqval 17658 . . . . . 6 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥(Hom ‘𝐷)𝑥))
392ad2antrr 726 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
4039raleqdv 3299 . . . . . 6 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
4138, 40riotaeqbidv 7347 . . . . 5 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
4235, 41eqtrd 2764 . . . 4 (((𝜑𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
433, 42mpteq12dva 5193 . . 3 ((𝜑𝐶 ∈ Cat) → (𝑥 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))))
44 simpr 484 . . . 4 ((𝜑𝐶 ∈ Cat) → 𝐶 ∈ Cat)
45 eqid 2729 . . . 4 (Id‘𝐶) = (Id‘𝐶)
464, 5, 11, 44, 45cidfval 17637 . . 3 ((𝜑𝐶 ∈ Cat) → (Id‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))))
47 eqid 2729 . . . 4 (Base‘𝐷) = (Base‘𝐷)
48 catpropd.3 . . . . . 6 (𝜑𝐶𝑉)
49 catpropd.4 . . . . . 6 (𝜑𝐷𝑊)
501, 14, 48, 49catpropd 17670 . . . . 5 (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
5150biimpa 476 . . . 4 ((𝜑𝐶 ∈ Cat) → 𝐷 ∈ Cat)
52 eqid 2729 . . . 4 (Id‘𝐷) = (Id‘𝐷)
5347, 6, 12, 51, 52cidfval 17637 . . 3 ((𝜑𝐶 ∈ Cat) → (Id‘𝐷) = (𝑥 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))))
5443, 46, 533eqtr4d 2774 . 2 ((𝜑𝐶 ∈ Cat) → (Id‘𝐶) = (Id‘𝐷))
55 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐶 ∈ Cat)
56 cidffn 17639 . . . . . . 7 Id Fn Cat
5756fndmi 6622 . . . . . 6 dom Id = Cat
5857eleq2i 2820 . . . . 5 (𝐶 ∈ dom Id ↔ 𝐶 ∈ Cat)
5955, 58sylnibr 329 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐶 ∈ dom Id)
60 ndmfv 6893 . . . 4 𝐶 ∈ dom Id → (Id‘𝐶) = ∅)
6159, 60syl 17 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐶) = ∅)
6257eleq2i 2820 . . . . . . 7 (𝐷 ∈ dom Id ↔ 𝐷 ∈ Cat)
6350, 62bitr4di 289 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ dom Id))
6463notbid 318 . . . . 5 (𝜑 → (¬ 𝐶 ∈ Cat ↔ ¬ 𝐷 ∈ dom Id))
6564biimpa 476 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐷 ∈ dom Id)
66 ndmfv 6893 . . . 4 𝐷 ∈ dom Id → (Id‘𝐷) = ∅)
6765, 66syl 17 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐷) = ∅)
6861, 67eqtr4d 2767 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐶) = (Id‘𝐷))
6954, 68pm2.61dan 812 1 (𝜑 → (Id‘𝐶) = (Id‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  c0 4296  cop 4595  cmpt 5188  dom cdm 5638  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Homf chomf 17627  compfccomf 17628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-cat 17629  df-cid 17630  df-homf 17631  df-comf 17632
This theorem is referenced by:  funcpropd  17864  curfpropd  18194  sectpropdlem  49022
  Copyright terms: Public domain W3C validator