| Step | Hyp | Ref
| Expression |
| 1 | | catpropd.1 |
. . . . . 6
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 2 | 1 | homfeqbas 17740 |
. . . . 5
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 3 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐷)) |
| 4 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 5 | | eqid 2736 |
. . . . . . . . . 10
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 6 | | eqid 2736 |
. . . . . . . . . 10
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 7 | 1 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 8 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶)) |
| 9 | | simpllr 775 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
| 10 | 4, 5, 6, 7, 8, 9 | homfeqval 17741 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐷)𝑥)) |
| 11 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 12 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 13 | 1 | ad5antr 734 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 14 | | catpropd.2 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 15 | 14 | ad5antr 734 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) →
(compf‘𝐶) = (compf‘𝐷)) |
| 16 | | simplr 768 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑦 ∈ (Base‘𝐶)) |
| 17 | | simp-4r 783 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶)) |
| 18 | | simpr 484 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) |
| 19 | | simpllr 775 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) |
| 20 | 4, 5, 11, 12, 13, 15, 16, 17, 17, 18, 19 | comfeqval 17752 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = (𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓)) |
| 21 | 20 | eqeq1d 2738 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ (𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓)) |
| 22 | 10, 21 | raleqbidva 3331 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓)) |
| 23 | 4, 5, 6, 7, 9, 8 | homfeqval 17741 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
| 24 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 25 | 14 | ad5antr 734 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) →
(compf‘𝐶) = (compf‘𝐷)) |
| 26 | 9 | adantr 480 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶)) |
| 27 | | simplr 768 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶)) |
| 28 | | simpllr 775 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) |
| 29 | | simpr 484 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 30 | 4, 5, 11, 12, 24, 25, 26, 26, 27, 28, 29 | comfeqval 17752 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = (𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔)) |
| 31 | 30 | eqeq1d 2738 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ (𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓)) |
| 32 | 23, 31 | raleqbidva 3331 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓)) |
| 33 | 22, 32 | anbi12d 632 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → ((∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓))) |
| 34 | 33 | ralbidva 3175 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓))) |
| 35 | 34 | riotabidva 7408 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) = (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓))) |
| 36 | 1 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 37 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
| 38 | 4, 5, 6, 36, 37, 37 | homfeqval 17741 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥(Hom ‘𝐷)𝑥)) |
| 39 | 2 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷)) |
| 40 | 39 | raleqdv 3325 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓))) |
| 41 | 38, 40 | riotaeqbidv 7392 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓)) = (℩𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓))) |
| 42 | 35, 41 | eqtrd 2776 |
. . . 4
⊢ (((𝜑 ∧ 𝐶 ∈ Cat) ∧ 𝑥 ∈ (Base‘𝐶)) → (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) = (℩𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓))) |
| 43 | 3, 42 | mpteq12dva 5230 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ Cat) → (𝑥 ∈ (Base‘𝐶) ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥 ∈ (Base‘𝐷) ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓)))) |
| 44 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat) |
| 45 | | eqid 2736 |
. . . 4
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 46 | 4, 5, 11, 44, 45 | cidfval 17720 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ Cat) → (Id‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)))) |
| 47 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 48 | | catpropd.3 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 49 | | catpropd.4 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| 50 | 1, 14, 48, 49 | catpropd 17753 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) |
| 51 | 50 | biimpa 476 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ Cat) → 𝐷 ∈ Cat) |
| 52 | | eqid 2736 |
. . . 4
⊢
(Id‘𝐷) =
(Id‘𝐷) |
| 53 | 47, 6, 12, 51, 52 | cidfval 17720 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ Cat) → (Id‘𝐷) = (𝑥 ∈ (Base‘𝐷) ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓)))) |
| 54 | 43, 46, 53 | 3eqtr4d 2786 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ Cat) → (Id‘𝐶) = (Id‘𝐷)) |
| 55 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐶 ∈ Cat) |
| 56 | | cidffn 17722 |
. . . . . . 7
⊢ Id Fn
Cat |
| 57 | 56 | fndmi 6671 |
. . . . . 6
⊢ dom Id =
Cat |
| 58 | 57 | eleq2i 2832 |
. . . . 5
⊢ (𝐶 ∈ dom Id ↔ 𝐶 ∈ Cat) |
| 59 | 55, 58 | sylnibr 329 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐶 ∈ dom Id) |
| 60 | | ndmfv 6940 |
. . . 4
⊢ (¬
𝐶 ∈ dom Id →
(Id‘𝐶) =
∅) |
| 61 | 59, 60 | syl 17 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐶) = ∅) |
| 62 | 57 | eleq2i 2832 |
. . . . . . 7
⊢ (𝐷 ∈ dom Id ↔ 𝐷 ∈ Cat) |
| 63 | 50, 62 | bitr4di 289 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ dom Id)) |
| 64 | 63 | notbid 318 |
. . . . 5
⊢ (𝜑 → (¬ 𝐶 ∈ Cat ↔ ¬ 𝐷 ∈ dom Id)) |
| 65 | 64 | biimpa 476 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → ¬ 𝐷 ∈ dom Id) |
| 66 | | ndmfv 6940 |
. . . 4
⊢ (¬
𝐷 ∈ dom Id →
(Id‘𝐷) =
∅) |
| 67 | 65, 66 | syl 17 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐷) = ∅) |
| 68 | 61, 67 | eqtr4d 2779 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ Cat) → (Id‘𝐶) = (Id‘𝐷)) |
| 69 | 54, 68 | pm2.61dan 812 |
1
⊢ (𝜑 → (Id‘𝐶) = (Id‘𝐷)) |