MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbseqi Structured version   Visualization version   GIF version

Theorem nmounbseqi 29139
Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmounbseqi ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
Distinct variable groups:   𝑓,𝑘,𝐿   𝑘,𝑌   𝑓,𝑀,𝑘   𝑇,𝑓,𝑘   𝑓,𝑋,𝑘   𝑘,𝑁
Allowed substitution hints:   𝑈(𝑓,𝑘)   𝑁(𝑓)   𝑊(𝑓,𝑘)   𝑌(𝑓)

Proof of Theorem nmounbseqi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
4 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
5 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
6 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
7 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
81, 2, 3, 4, 5, 6, 7nmounbi 29138 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))))
98biimpa 477 . 2 ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))))
10 nnre 11980 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
1110imim1i 63 . . 3 ((𝑘 ∈ ℝ → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))) → (𝑘 ∈ ℕ → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))))
1211ralimi2 3084 . 2 (∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) → ∀𝑘 ∈ ℕ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))))
131fvexi 6788 . . 3 𝑋 ∈ V
14 nnenom 13700 . . 3 ℕ ≈ ω
15 fveq2 6774 . . . . 5 (𝑦 = (𝑓𝑘) → (𝐿𝑦) = (𝐿‘(𝑓𝑘)))
1615breq1d 5084 . . . 4 (𝑦 = (𝑓𝑘) → ((𝐿𝑦) ≤ 1 ↔ (𝐿‘(𝑓𝑘)) ≤ 1))
17 2fveq3 6779 . . . . 5 (𝑦 = (𝑓𝑘) → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇‘(𝑓𝑘))))
1817breq2d 5086 . . . 4 (𝑦 = (𝑓𝑘) → (𝑘 < (𝑀‘(𝑇𝑦)) ↔ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘)))))
1916, 18anbi12d 631 . . 3 (𝑦 = (𝑓𝑘) → (((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) ↔ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
2013, 14, 19axcc4 10195 . 2 (∀𝑘 ∈ ℕ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
219, 12, 203syl 18 1 ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  1c1 10872  +∞cpnf 11006   < clt 11009  cle 11010  cn 11973  NrmCVeccnv 28946  BaseSetcba 28948  normCVcnmcv 28952   normOpOLD cnmoo 29103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-nmoo 29107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator