MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbseqi Structured version   Visualization version   GIF version

Theorem nmounbseqi 28715
Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmounbseqi ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
Distinct variable groups:   𝑓,𝑘,𝐿   𝑘,𝑌   𝑓,𝑀,𝑘   𝑇,𝑓,𝑘   𝑓,𝑋,𝑘   𝑘,𝑁
Allowed substitution hints:   𝑈(𝑓,𝑘)   𝑁(𝑓)   𝑊(𝑓,𝑘)   𝑌(𝑓)

Proof of Theorem nmounbseqi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
4 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
5 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
6 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
7 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
81, 2, 3, 4, 5, 6, 7nmounbi 28714 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))))
98biimpa 480 . 2 ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))))
10 nnre 11726 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
1110imim1i 63 . . 3 ((𝑘 ∈ ℝ → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))) → (𝑘 ∈ ℕ → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))))
1211ralimi2 3073 . 2 (∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) → ∀𝑘 ∈ ℕ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))))
131fvexi 6691 . . 3 𝑋 ∈ V
14 nnenom 13442 . . 3 ℕ ≈ ω
15 fveq2 6677 . . . . 5 (𝑦 = (𝑓𝑘) → (𝐿𝑦) = (𝐿‘(𝑓𝑘)))
1615breq1d 5041 . . . 4 (𝑦 = (𝑓𝑘) → ((𝐿𝑦) ≤ 1 ↔ (𝐿‘(𝑓𝑘)) ≤ 1))
17 2fveq3 6682 . . . . 5 (𝑦 = (𝑓𝑘) → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇‘(𝑓𝑘))))
1817breq2d 5043 . . . 4 (𝑦 = (𝑓𝑘) → (𝑘 < (𝑀‘(𝑇𝑦)) ↔ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘)))))
1916, 18anbi12d 634 . . 3 (𝑦 = (𝑓𝑘) → (((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) ↔ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
2013, 14, 19axcc4 9942 . 2 (∀𝑘 ∈ ℕ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
219, 12, 203syl 18 1 ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wex 1786  wcel 2114  wral 3054  wrex 3055   class class class wbr 5031  wf 6336  cfv 6340  (class class class)co 7173  cr 10617  1c1 10619  +∞cpnf 10753   < clt 10756  cle 10757  cn 11719  NrmCVeccnv 28522  BaseSetcba 28524  normCVcnmcv 28528   normOpOLD cnmoo 28679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-inf2 9180  ax-cc 9938  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-er 8323  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-sup 8982  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-n0 11980  df-z 12066  df-uz 12328  df-rp 12476  df-seq 13464  df-exp 13525  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-grpo 28431  df-gid 28432  df-ginv 28433  df-ablo 28483  df-vc 28497  df-nv 28530  df-va 28533  df-ba 28534  df-sm 28535  df-0v 28536  df-nmcv 28538  df-nmoo 28683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator