![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmounbseqi | Structured version Visualization version GIF version |
Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoubi.1 | β’ π = (BaseSetβπ) |
nmoubi.y | β’ π = (BaseSetβπ) |
nmoubi.l | β’ πΏ = (normCVβπ) |
nmoubi.m | β’ π = (normCVβπ) |
nmoubi.3 | β’ π = (π normOpOLD π) |
nmoubi.u | β’ π β NrmCVec |
nmoubi.w | β’ π β NrmCVec |
Ref | Expression |
---|---|
nmounbseqi | β’ ((π:πβΆπ β§ (πβπ) = +β) β βπ(π:ββΆπ β§ βπ β β ((πΏβ(πβπ)) β€ 1 β§ π < (πβ(πβ(πβπ)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoubi.1 | . . . 4 β’ π = (BaseSetβπ) | |
2 | nmoubi.y | . . . 4 β’ π = (BaseSetβπ) | |
3 | nmoubi.l | . . . 4 β’ πΏ = (normCVβπ) | |
4 | nmoubi.m | . . . 4 β’ π = (normCVβπ) | |
5 | nmoubi.3 | . . . 4 β’ π = (π normOpOLD π) | |
6 | nmoubi.u | . . . 4 β’ π β NrmCVec | |
7 | nmoubi.w | . . . 4 β’ π β NrmCVec | |
8 | 1, 2, 3, 4, 5, 6, 7 | nmounbi 30024 | . . 3 β’ (π:πβΆπ β ((πβπ) = +β β βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦))))) |
9 | 8 | biimpa 477 | . 2 β’ ((π:πβΆπ β§ (πβπ) = +β) β βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦)))) |
10 | nnre 12218 | . . . 4 β’ (π β β β π β β) | |
11 | 10 | imim1i 63 | . . 3 β’ ((π β β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦)))) β (π β β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦))))) |
12 | 11 | ralimi2 3078 | . 2 β’ (βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦))) β βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦)))) |
13 | 1 | fvexi 6905 | . . 3 β’ π β V |
14 | nnenom 13944 | . . 3 β’ β β Ο | |
15 | fveq2 6891 | . . . . 5 β’ (π¦ = (πβπ) β (πΏβπ¦) = (πΏβ(πβπ))) | |
16 | 15 | breq1d 5158 | . . . 4 β’ (π¦ = (πβπ) β ((πΏβπ¦) β€ 1 β (πΏβ(πβπ)) β€ 1)) |
17 | 2fveq3 6896 | . . . . 5 β’ (π¦ = (πβπ) β (πβ(πβπ¦)) = (πβ(πβ(πβπ)))) | |
18 | 17 | breq2d 5160 | . . . 4 β’ (π¦ = (πβπ) β (π < (πβ(πβπ¦)) β π < (πβ(πβ(πβπ))))) |
19 | 16, 18 | anbi12d 631 | . . 3 β’ (π¦ = (πβπ) β (((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦))) β ((πΏβ(πβπ)) β€ 1 β§ π < (πβ(πβ(πβπ)))))) |
20 | 13, 14, 19 | axcc4 10433 | . 2 β’ (βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦))) β βπ(π:ββΆπ β§ βπ β β ((πΏβ(πβπ)) β€ 1 β§ π < (πβ(πβ(πβπ)))))) |
21 | 9, 12, 20 | 3syl 18 | 1 β’ ((π:πβΆπ β§ (πβπ) = +β) β βπ(π:ββΆπ β§ βπ β β ((πΏβ(πβπ)) β€ 1 β§ π < (πβ(πβ(πβπ)))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 βwex 1781 β wcel 2106 βwral 3061 βwrex 3070 class class class wbr 5148 βΆwf 6539 βcfv 6543 (class class class)co 7408 βcr 11108 1c1 11110 +βcpnf 11244 < clt 11247 β€ cle 11248 βcn 12211 NrmCVeccnv 29832 BaseSetcba 29834 normCVcnmcv 29838 normOpOLD cnmoo 29989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cc 10429 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-grpo 29741 df-gid 29742 df-ginv 29743 df-ablo 29793 df-vc 29807 df-nv 29840 df-va 29843 df-ba 29844 df-sm 29845 df-0v 29846 df-nmcv 29848 df-nmoo 29993 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |