| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmounbseqi | Structured version Visualization version GIF version | ||
| Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
| nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
| nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| nmounbseqi | ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nmoubi.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 3 | nmoubi.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
| 4 | nmoubi.m | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
| 5 | nmoubi.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 6 | nmoubi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | nmounbi 30705 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑘 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))))) |
| 9 | 8 | biimpa 476 | . 2 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∀𝑘 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦)))) |
| 10 | nnre 12193 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
| 11 | 10 | imim1i 63 | . . 3 ⊢ ((𝑘 ∈ ℝ → ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦)))) → (𝑘 ∈ ℕ → ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))))) |
| 12 | 11 | ralimi2 3061 | . 2 ⊢ (∀𝑘 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))) → ∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦)))) |
| 13 | 1 | fvexi 6872 | . . 3 ⊢ 𝑋 ∈ V |
| 14 | nnenom 13945 | . . 3 ⊢ ℕ ≈ ω | |
| 15 | fveq2 6858 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑘) → (𝐿‘𝑦) = (𝐿‘(𝑓‘𝑘))) | |
| 16 | 15 | breq1d 5117 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑘) → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘(𝑓‘𝑘)) ≤ 1)) |
| 17 | 2fveq3 6863 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘(𝑓‘𝑘)))) | |
| 18 | 17 | breq2d 5119 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑘 < (𝑀‘(𝑇‘𝑦)) ↔ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘))))) |
| 19 | 16, 18 | anbi12d 632 | . . 3 ⊢ (𝑦 = (𝑓‘𝑘) → (((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) |
| 20 | 13, 14, 19 | axcc4 10392 | . 2 ⊢ (∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) |
| 21 | 9, 12, 20 | 3syl 18 | 1 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 1c1 11069 +∞cpnf 11205 < clt 11208 ≤ cle 11209 ℕcn 12186 NrmCVeccnv 30513 BaseSetcba 30515 normCVcnmcv 30519 normOpOLD cnmoo 30670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-grpo 30422 df-gid 30423 df-ginv 30424 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-nmcv 30529 df-nmoo 30674 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |