Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmounbseqi | Structured version Visualization version GIF version |
Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
nmounbseqi | ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoubi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nmoubi.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
3 | nmoubi.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
4 | nmoubi.m | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
5 | nmoubi.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
6 | nmoubi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
7 | nmoubi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
8 | 1, 2, 3, 4, 5, 6, 7 | nmounbi 28714 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑘 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))))) |
9 | 8 | biimpa 480 | . 2 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∀𝑘 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦)))) |
10 | nnre 11726 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
11 | 10 | imim1i 63 | . . 3 ⊢ ((𝑘 ∈ ℝ → ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦)))) → (𝑘 ∈ ℕ → ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))))) |
12 | 11 | ralimi2 3073 | . 2 ⊢ (∀𝑘 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))) → ∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦)))) |
13 | 1 | fvexi 6691 | . . 3 ⊢ 𝑋 ∈ V |
14 | nnenom 13442 | . . 3 ⊢ ℕ ≈ ω | |
15 | fveq2 6677 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑘) → (𝐿‘𝑦) = (𝐿‘(𝑓‘𝑘))) | |
16 | 15 | breq1d 5041 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑘) → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘(𝑓‘𝑘)) ≤ 1)) |
17 | 2fveq3 6682 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘(𝑓‘𝑘)))) | |
18 | 17 | breq2d 5043 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑘 < (𝑀‘(𝑇‘𝑦)) ↔ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘))))) |
19 | 16, 18 | anbi12d 634 | . . 3 ⊢ (𝑦 = (𝑓‘𝑘) → (((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) |
20 | 13, 14, 19 | axcc4 9942 | . 2 ⊢ (∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) |
21 | 9, 12, 20 | 3syl 18 | 1 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∃wex 1786 ∈ wcel 2114 ∀wral 3054 ∃wrex 3055 class class class wbr 5031 ⟶wf 6336 ‘cfv 6340 (class class class)co 7173 ℝcr 10617 1c1 10619 +∞cpnf 10753 < clt 10756 ≤ cle 10757 ℕcn 11719 NrmCVeccnv 28522 BaseSetcba 28524 normCVcnmcv 28528 normOpOLD cnmoo 28679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-inf2 9180 ax-cc 9938 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 ax-pre-sup 10696 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-1st 7717 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-er 8323 df-map 8442 df-en 8559 df-dom 8560 df-sdom 8561 df-sup 8982 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-div 11379 df-nn 11720 df-2 11782 df-3 11783 df-n0 11980 df-z 12066 df-uz 12328 df-rp 12476 df-seq 13464 df-exp 13525 df-cj 14551 df-re 14552 df-im 14553 df-sqrt 14687 df-abs 14688 df-grpo 28431 df-gid 28432 df-ginv 28433 df-ablo 28483 df-vc 28497 df-nv 28530 df-va 28533 df-ba 28534 df-sm 28535 df-0v 28536 df-nmcv 28538 df-nmoo 28683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |