MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbseqi Structured version   Visualization version   GIF version

Theorem nmounbseqi 30725
Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmounbseqi ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
Distinct variable groups:   𝑓,𝑘,𝐿   𝑘,𝑌   𝑓,𝑀,𝑘   𝑇,𝑓,𝑘   𝑓,𝑋,𝑘   𝑘,𝑁
Allowed substitution hints:   𝑈(𝑓,𝑘)   𝑁(𝑓)   𝑊(𝑓,𝑘)   𝑌(𝑓)

Proof of Theorem nmounbseqi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
4 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
5 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
6 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
7 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
81, 2, 3, 4, 5, 6, 7nmounbi 30724 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))))
98biimpa 476 . 2 ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))))
10 nnre 12135 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
1110imim1i 63 . . 3 ((𝑘 ∈ ℝ → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))) → (𝑘 ∈ ℕ → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))))
1211ralimi2 3061 . 2 (∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) → ∀𝑘 ∈ ℕ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))))
131fvexi 6836 . . 3 𝑋 ∈ V
14 nnenom 13887 . . 3 ℕ ≈ ω
15 fveq2 6822 . . . . 5 (𝑦 = (𝑓𝑘) → (𝐿𝑦) = (𝐿‘(𝑓𝑘)))
1615breq1d 5102 . . . 4 (𝑦 = (𝑓𝑘) → ((𝐿𝑦) ≤ 1 ↔ (𝐿‘(𝑓𝑘)) ≤ 1))
17 2fveq3 6827 . . . . 5 (𝑦 = (𝑓𝑘) → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇‘(𝑓𝑘))))
1817breq2d 5104 . . . 4 (𝑦 = (𝑓𝑘) → (𝑘 < (𝑀‘(𝑇𝑦)) ↔ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘)))))
1916, 18anbi12d 632 . . 3 (𝑦 = (𝑓𝑘) → (((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) ↔ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
2013, 14, 19axcc4 10333 . 2 (∀𝑘 ∈ ℕ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
219, 12, 203syl 18 1 ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  1c1 11010  +∞cpnf 11146   < clt 11149  cle 11150  cn 12128  NrmCVeccnv 30532  BaseSetcba 30534  normCVcnmcv 30538   normOpOLD cnmoo 30689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30441  df-gid 30442  df-ginv 30443  df-ablo 30493  df-vc 30507  df-nv 30540  df-va 30543  df-ba 30544  df-sm 30545  df-0v 30546  df-nmcv 30548  df-nmoo 30693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator