MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resixpfo Structured version   Visualization version   GIF version

Theorem resixpfo 8955
Description: Restriction of elements of an infinite Cartesian product creates a surjection, if the original Cartesian product is nonempty. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
resixpfo.1 𝐹 = (𝑓X𝑥𝐴 𝐶 ↦ (𝑓𝐵))
Assertion
Ref Expression
resixpfo ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓,𝑥   𝐶,𝑓
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥,𝑓)

Proof of Theorem resixpfo
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resixp 8952 . . . 4 ((𝐵𝐴𝑓X𝑥𝐴 𝐶) → (𝑓𝐵) ∈ X𝑥𝐵 𝐶)
2 resixpfo.1 . . . 4 𝐹 = (𝑓X𝑥𝐴 𝐶 ↦ (𝑓𝐵))
31, 2fmptd 7109 . . 3 (𝐵𝐴𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶)
43adantr 480 . 2 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶)
5 n0 4333 . . . 4 (X𝑥𝐴 𝐶 ≠ ∅ ↔ ∃𝑔 𝑔X𝑥𝐴 𝐶)
6 eleq1w 2818 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
76ifbid 4529 . . . . . . . . . . 11 (𝑧 = 𝑥 → if(𝑧𝐵, , 𝑔) = if(𝑥𝐵, , 𝑔))
8 id 22 . . . . . . . . . . 11 (𝑧 = 𝑥𝑧 = 𝑥)
97, 8fveq12d 6888 . . . . . . . . . 10 (𝑧 = 𝑥 → (if(𝑧𝐵, , 𝑔)‘𝑧) = (if(𝑥𝐵, , 𝑔)‘𝑥))
109cbvmptv 5230 . . . . . . . . 9 (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) = (𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥))
11 vex 3468 . . . . . . . . . . . . . . . 16 ∈ V
1211elixp 8923 . . . . . . . . . . . . . . 15 (X𝑥𝐵 𝐶 ↔ ( Fn 𝐵 ∧ ∀𝑥𝐵 (𝑥) ∈ 𝐶))
1312simprbi 496 . . . . . . . . . . . . . 14 (X𝑥𝐵 𝐶 → ∀𝑥𝐵 (𝑥) ∈ 𝐶)
14 fveq1 6880 . . . . . . . . . . . . . . . . . 18 ( = if(𝑥𝐵, , 𝑔) → (𝑥) = (if(𝑥𝐵, , 𝑔)‘𝑥))
1514eleq1d 2820 . . . . . . . . . . . . . . . . 17 ( = if(𝑥𝐵, , 𝑔) → ((𝑥) ∈ 𝐶 ↔ (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
16 fveq1 6880 . . . . . . . . . . . . . . . . . 18 (𝑔 = if(𝑥𝐵, , 𝑔) → (𝑔𝑥) = (if(𝑥𝐵, , 𝑔)‘𝑥))
1716eleq1d 2820 . . . . . . . . . . . . . . . . 17 (𝑔 = if(𝑥𝐵, , 𝑔) → ((𝑔𝑥) ∈ 𝐶 ↔ (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
18 simpl 482 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) → (𝑥𝐵 → (𝑥) ∈ 𝐶))
1918imp 406 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) ∧ 𝑥𝐵) → (𝑥) ∈ 𝐶)
20 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) ∧ ¬ 𝑥𝐵) → (𝑔𝑥) ∈ 𝐶)
2115, 17, 19, 20ifbothda 4544 . . . . . . . . . . . . . . . 16 (((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)
2221exp32 420 . . . . . . . . . . . . . . 15 ((𝑥𝐵 → (𝑥) ∈ 𝐶) → (𝑥𝐴 → ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)))
2322ralimi2 3069 . . . . . . . . . . . . . 14 (∀𝑥𝐵 (𝑥) ∈ 𝐶 → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2413, 23syl 17 . . . . . . . . . . . . 13 (X𝑥𝐵 𝐶 → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2524adantl 481 . . . . . . . . . . . 12 ((𝐵𝐴X𝑥𝐵 𝐶) → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
26 ralim 3077 . . . . . . . . . . . 12 (∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶) → (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶 → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2725, 26syl 17 . . . . . . . . . . 11 ((𝐵𝐴X𝑥𝐵 𝐶) → (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶 → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
28 vex 3468 . . . . . . . . . . . . 13 𝑔 ∈ V
2928elixp 8923 . . . . . . . . . . . 12 (𝑔X𝑥𝐴 𝐶 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶))
3029simprbi 496 . . . . . . . . . . 11 (𝑔X𝑥𝐴 𝐶 → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶)
3127, 30impel 505 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)
32 n0i 4320 . . . . . . . . . . . . 13 (𝑔X𝑥𝐴 𝐶 → ¬ X𝑥𝐴 𝐶 = ∅)
33 ixpprc 8938 . . . . . . . . . . . . 13 𝐴 ∈ V → X𝑥𝐴 𝐶 = ∅)
3432, 33nsyl2 141 . . . . . . . . . . . 12 (𝑔X𝑥𝐴 𝐶𝐴 ∈ V)
3534adantl 481 . . . . . . . . . . 11 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → 𝐴 ∈ V)
36 mptelixpg 8954 . . . . . . . . . . 11 (𝐴 ∈ V → ((𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
3735, 36syl 17 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
3831, 37mpbird 257 . . . . . . . . 9 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶)
3910, 38eqeltrid 2839 . . . . . . . 8 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ∈ X𝑥𝐴 𝐶)
40 reseq1 5965 . . . . . . . . . 10 (𝑓 = (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) → (𝑓𝐵) = ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵))
41 iftrue 4511 . . . . . . . . . . . . . 14 (𝑧𝐵 → if(𝑧𝐵, , 𝑔) = )
4241fveq1d 6883 . . . . . . . . . . . . 13 (𝑧𝐵 → (if(𝑧𝐵, , 𝑔)‘𝑧) = (𝑧))
4342mpteq2ia 5221 . . . . . . . . . . . 12 (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) = (𝑧𝐵 ↦ (𝑧))
44 resmpt 6029 . . . . . . . . . . . . 13 (𝐵𝐴 → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))
4544ad2antrr 726 . . . . . . . . . . . 12 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))
46 ixpfn 8922 . . . . . . . . . . . . . 14 (X𝑥𝐵 𝐶 Fn 𝐵)
4746ad2antlr 727 . . . . . . . . . . . . 13 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → Fn 𝐵)
48 dffn5 6942 . . . . . . . . . . . . 13 ( Fn 𝐵 = (𝑧𝐵 ↦ (𝑧)))
4947, 48sylib 218 . . . . . . . . . . . 12 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → = (𝑧𝐵 ↦ (𝑧)))
5043, 45, 493eqtr4a 2797 . . . . . . . . . . 11 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = )
5150, 11eqeltrdi 2843 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) ∈ V)
522, 40, 39, 51fvmptd3 7014 . . . . . . . . 9 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))) = ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵))
5352, 50eqtr2d 2772 . . . . . . . 8 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))))
54 fveq2 6881 . . . . . . . . 9 (𝑦 = (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) → (𝐹𝑦) = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))))
5554rspceeqv 3629 . . . . . . . 8 (((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ∈ X𝑥𝐴 𝐶 = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))) → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
5639, 53, 55syl2anc 584 . . . . . . 7 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
5756ex 412 . . . . . 6 ((𝐵𝐴X𝑥𝐵 𝐶) → (𝑔X𝑥𝐴 𝐶 → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
5857ralrimdva 3141 . . . . 5 (𝐵𝐴 → (𝑔X𝑥𝐴 𝐶 → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
5958exlimdv 1933 . . . 4 (𝐵𝐴 → (∃𝑔 𝑔X𝑥𝐴 𝐶 → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
605, 59biimtrid 242 . . 3 (𝐵𝐴 → (X𝑥𝐴 𝐶 ≠ ∅ → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
6160imp 406 . 2 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
62 dffo3 7097 . 2 (𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶 ↔ (𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶 ∧ ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
634, 61, 62sylanbrc 583 1 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  wss 3931  c0 4313  ifcif 4505  cmpt 5206  cres 5661   Fn wfn 6531  wf 6532  ontowfo 6534  cfv 6536  Xcixp 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ixp 8917
This theorem is referenced by:  ptcmplem2  23996
  Copyright terms: Public domain W3C validator