| Step | Hyp | Ref
| Expression |
| 1 | | resixp 8952 |
. . . 4
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝑓 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
| 2 | | resixpfo.1 |
. . . 4
⊢ 𝐹 = (𝑓 ∈ X𝑥 ∈ 𝐴 𝐶 ↦ (𝑓 ↾ 𝐵)) |
| 3 | 1, 2 | fmptd 7109 |
. . 3
⊢ (𝐵 ⊆ 𝐴 → 𝐹:X𝑥 ∈ 𝐴 𝐶⟶X𝑥 ∈ 𝐵 𝐶) |
| 4 | 3 | adantr 480 |
. 2
⊢ ((𝐵 ⊆ 𝐴 ∧ X𝑥 ∈ 𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥 ∈ 𝐴 𝐶⟶X𝑥 ∈ 𝐵 𝐶) |
| 5 | | n0 4333 |
. . . 4
⊢ (X𝑥 ∈
𝐴 𝐶 ≠ ∅ ↔ ∃𝑔 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) |
| 6 | | eleq1w 2818 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
| 7 | 6 | ifbid 4529 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → if(𝑧 ∈ 𝐵, ℎ, 𝑔) = if(𝑥 ∈ 𝐵, ℎ, 𝑔)) |
| 8 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) |
| 9 | 7, 8 | fveq12d 6888 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧) = (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥)) |
| 10 | 9 | cbvmptv 5230 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) = (𝑥 ∈ 𝐴 ↦ (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥)) |
| 11 | | vex 3468 |
. . . . . . . . . . . . . . . 16
⊢ ℎ ∈ V |
| 12 | 11 | elixp 8923 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ X𝑥 ∈
𝐵 𝐶 ↔ (ℎ Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (ℎ‘𝑥) ∈ 𝐶)) |
| 13 | 12 | simprbi 496 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ X𝑥 ∈
𝐵 𝐶 → ∀𝑥 ∈ 𝐵 (ℎ‘𝑥) ∈ 𝐶) |
| 14 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = if(𝑥 ∈ 𝐵, ℎ, 𝑔) → (ℎ‘𝑥) = (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥)) |
| 15 | 14 | eleq1d 2820 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = if(𝑥 ∈ 𝐵, ℎ, 𝑔) → ((ℎ‘𝑥) ∈ 𝐶 ↔ (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶)) |
| 16 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = if(𝑥 ∈ 𝐵, ℎ, 𝑔) → (𝑔‘𝑥) = (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥)) |
| 17 | 16 | eleq1d 2820 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = if(𝑥 ∈ 𝐵, ℎ, 𝑔) → ((𝑔‘𝑥) ∈ 𝐶 ↔ (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶)) |
| 18 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 𝐵 → (ℎ‘𝑥) ∈ 𝐶) ∧ (𝑥 ∈ 𝐴 ∧ (𝑔‘𝑥) ∈ 𝐶)) → (𝑥 ∈ 𝐵 → (ℎ‘𝑥) ∈ 𝐶)) |
| 19 | 18 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ 𝐵 → (ℎ‘𝑥) ∈ 𝐶) ∧ (𝑥 ∈ 𝐴 ∧ (𝑔‘𝑥) ∈ 𝐶)) ∧ 𝑥 ∈ 𝐵) → (ℎ‘𝑥) ∈ 𝐶) |
| 20 | | simplrr 777 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ 𝐵 → (ℎ‘𝑥) ∈ 𝐶) ∧ (𝑥 ∈ 𝐴 ∧ (𝑔‘𝑥) ∈ 𝐶)) ∧ ¬ 𝑥 ∈ 𝐵) → (𝑔‘𝑥) ∈ 𝐶) |
| 21 | 15, 17, 19, 20 | ifbothda 4544 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ 𝐵 → (ℎ‘𝑥) ∈ 𝐶) ∧ (𝑥 ∈ 𝐴 ∧ (𝑔‘𝑥) ∈ 𝐶)) → (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶) |
| 22 | 21 | exp32 420 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐵 → (ℎ‘𝑥) ∈ 𝐶) → (𝑥 ∈ 𝐴 → ((𝑔‘𝑥) ∈ 𝐶 → (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶))) |
| 23 | 22 | ralimi2 3069 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐵 (ℎ‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝐴 ((𝑔‘𝑥) ∈ 𝐶 → (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶)) |
| 24 | 13, 23 | syl 17 |
. . . . . . . . . . . . 13
⊢ (ℎ ∈ X𝑥 ∈
𝐵 𝐶 → ∀𝑥 ∈ 𝐴 ((𝑔‘𝑥) ∈ 𝐶 → (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶)) |
| 25 | 24 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) → ∀𝑥 ∈ 𝐴 ((𝑔‘𝑥) ∈ 𝐶 → (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶)) |
| 26 | | ralim 3077 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐴 ((𝑔‘𝑥) ∈ 𝐶 → (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶) → (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝐴 (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶)) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) → (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝐴 (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶)) |
| 28 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑔 ∈ V |
| 29 | 28 | elixp 8923 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ X𝑥 ∈
𝐴 𝐶 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐶)) |
| 30 | 29 | simprbi 496 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ X𝑥 ∈
𝐴 𝐶 → ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐶) |
| 31 | 27, 30 | impel 505 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐴 (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶) |
| 32 | | n0i 4320 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ X𝑥 ∈
𝐴 𝐶 → ¬ X𝑥 ∈ 𝐴 𝐶 = ∅) |
| 33 | | ixpprc 8938 |
. . . . . . . . . . . . 13
⊢ (¬
𝐴 ∈ V → X𝑥 ∈
𝐴 𝐶 = ∅) |
| 34 | 32, 33 | nsyl2 141 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ X𝑥 ∈
𝐴 𝐶 → 𝐴 ∈ V) |
| 35 | 34 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐴 ∈ V) |
| 36 | | mptelixpg 8954 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → ((𝑥 ∈ 𝐴 ↦ (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥)) ∈ X𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶)) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → ((𝑥 ∈ 𝐴 ↦ (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥)) ∈ X𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥) ∈ 𝐶)) |
| 38 | 31, 37 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝑥 ∈ 𝐴 ↦ (if(𝑥 ∈ 𝐵, ℎ, 𝑔)‘𝑥)) ∈ X𝑥 ∈ 𝐴 𝐶) |
| 39 | 10, 38 | eqeltrid 2839 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) ∈ X𝑥 ∈ 𝐴 𝐶) |
| 40 | | reseq1 5965 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) → (𝑓 ↾ 𝐵) = ((𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) ↾ 𝐵)) |
| 41 | | iftrue 4511 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐵 → if(𝑧 ∈ 𝐵, ℎ, 𝑔) = ℎ) |
| 42 | 41 | fveq1d 6883 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐵 → (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧) = (ℎ‘𝑧)) |
| 43 | 42 | mpteq2ia 5221 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝐵 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) = (𝑧 ∈ 𝐵 ↦ (ℎ‘𝑧)) |
| 44 | | resmpt 6029 |
. . . . . . . . . . . . 13
⊢ (𝐵 ⊆ 𝐴 → ((𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) ↾ 𝐵) = (𝑧 ∈ 𝐵 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧))) |
| 45 | 44 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → ((𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) ↾ 𝐵) = (𝑧 ∈ 𝐵 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧))) |
| 46 | | ixpfn 8922 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ X𝑥 ∈
𝐵 𝐶 → ℎ Fn 𝐵) |
| 47 | 46 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → ℎ Fn 𝐵) |
| 48 | | dffn5 6942 |
. . . . . . . . . . . . 13
⊢ (ℎ Fn 𝐵 ↔ ℎ = (𝑧 ∈ 𝐵 ↦ (ℎ‘𝑧))) |
| 49 | 47, 48 | sylib 218 |
. . . . . . . . . . . 12
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → ℎ = (𝑧 ∈ 𝐵 ↦ (ℎ‘𝑧))) |
| 50 | 43, 45, 49 | 3eqtr4a 2797 |
. . . . . . . . . . 11
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → ((𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) ↾ 𝐵) = ℎ) |
| 51 | 50, 11 | eqeltrdi 2843 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → ((𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) ↾ 𝐵) ∈ V) |
| 52 | 2, 40, 39, 51 | fvmptd3 7014 |
. . . . . . . . 9
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹‘(𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧))) = ((𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) ↾ 𝐵)) |
| 53 | 52, 50 | eqtr2d 2772 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → ℎ = (𝐹‘(𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)))) |
| 54 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑦 = (𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) → (𝐹‘𝑦) = (𝐹‘(𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)))) |
| 55 | 54 | rspceeqv 3629 |
. . . . . . . 8
⊢ (((𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)) ∈ X𝑥 ∈ 𝐴 𝐶 ∧ ℎ = (𝐹‘(𝑧 ∈ 𝐴 ↦ (if(𝑧 ∈ 𝐵, ℎ, 𝑔)‘𝑧)))) → ∃𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶ℎ = (𝐹‘𝑦)) |
| 56 | 39, 53, 55 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶) → ∃𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶ℎ = (𝐹‘𝑦)) |
| 57 | 56 | ex 412 |
. . . . . 6
⊢ ((𝐵 ⊆ 𝐴 ∧ ℎ ∈ X𝑥 ∈ 𝐵 𝐶) → (𝑔 ∈ X𝑥 ∈ 𝐴 𝐶 → ∃𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶ℎ = (𝐹‘𝑦))) |
| 58 | 57 | ralrimdva 3141 |
. . . . 5
⊢ (𝐵 ⊆ 𝐴 → (𝑔 ∈ X𝑥 ∈ 𝐴 𝐶 → ∀ℎ ∈ X 𝑥 ∈ 𝐵 𝐶∃𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶ℎ = (𝐹‘𝑦))) |
| 59 | 58 | exlimdv 1933 |
. . . 4
⊢ (𝐵 ⊆ 𝐴 → (∃𝑔 𝑔 ∈ X𝑥 ∈ 𝐴 𝐶 → ∀ℎ ∈ X 𝑥 ∈ 𝐵 𝐶∃𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶ℎ = (𝐹‘𝑦))) |
| 60 | 5, 59 | biimtrid 242 |
. . 3
⊢ (𝐵 ⊆ 𝐴 → (X𝑥 ∈ 𝐴 𝐶 ≠ ∅ → ∀ℎ ∈ X
𝑥 ∈ 𝐵 𝐶∃𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶ℎ = (𝐹‘𝑦))) |
| 61 | 60 | imp 406 |
. 2
⊢ ((𝐵 ⊆ 𝐴 ∧ X𝑥 ∈ 𝐴 𝐶 ≠ ∅) → ∀ℎ ∈ X
𝑥 ∈ 𝐵 𝐶∃𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶ℎ = (𝐹‘𝑦)) |
| 62 | | dffo3 7097 |
. 2
⊢ (𝐹:X𝑥 ∈ 𝐴 𝐶–onto→X𝑥 ∈ 𝐵 𝐶 ↔ (𝐹:X𝑥 ∈ 𝐴 𝐶⟶X𝑥 ∈ 𝐵 𝐶 ∧ ∀ℎ ∈ X 𝑥 ∈ 𝐵 𝐶∃𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶ℎ = (𝐹‘𝑦))) |
| 63 | 4, 61, 62 | sylanbrc 583 |
1
⊢ ((𝐵 ⊆ 𝐴 ∧ X𝑥 ∈ 𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥 ∈ 𝐴 𝐶–onto→X𝑥 ∈ 𝐵 𝐶) |