MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resixpfo Structured version   Visualization version   GIF version

Theorem resixpfo 8977
Description: Restriction of elements of an infinite Cartesian product creates a surjection, if the original Cartesian product is nonempty. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
resixpfo.1 𝐹 = (𝑓X𝑥𝐴 𝐶 ↦ (𝑓𝐵))
Assertion
Ref Expression
resixpfo ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓,𝑥   𝐶,𝑓
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥,𝑓)

Proof of Theorem resixpfo
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resixp 8974 . . . 4 ((𝐵𝐴𝑓X𝑥𝐴 𝐶) → (𝑓𝐵) ∈ X𝑥𝐵 𝐶)
2 resixpfo.1 . . . 4 𝐹 = (𝑓X𝑥𝐴 𝐶 ↦ (𝑓𝐵))
31, 2fmptd 7133 . . 3 (𝐵𝐴𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶)
43adantr 480 . 2 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶)
5 n0 4352 . . . 4 (X𝑥𝐴 𝐶 ≠ ∅ ↔ ∃𝑔 𝑔X𝑥𝐴 𝐶)
6 eleq1w 2823 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
76ifbid 4548 . . . . . . . . . . 11 (𝑧 = 𝑥 → if(𝑧𝐵, , 𝑔) = if(𝑥𝐵, , 𝑔))
8 id 22 . . . . . . . . . . 11 (𝑧 = 𝑥𝑧 = 𝑥)
97, 8fveq12d 6912 . . . . . . . . . 10 (𝑧 = 𝑥 → (if(𝑧𝐵, , 𝑔)‘𝑧) = (if(𝑥𝐵, , 𝑔)‘𝑥))
109cbvmptv 5254 . . . . . . . . 9 (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) = (𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥))
11 vex 3483 . . . . . . . . . . . . . . . 16 ∈ V
1211elixp 8945 . . . . . . . . . . . . . . 15 (X𝑥𝐵 𝐶 ↔ ( Fn 𝐵 ∧ ∀𝑥𝐵 (𝑥) ∈ 𝐶))
1312simprbi 496 . . . . . . . . . . . . . 14 (X𝑥𝐵 𝐶 → ∀𝑥𝐵 (𝑥) ∈ 𝐶)
14 fveq1 6904 . . . . . . . . . . . . . . . . . 18 ( = if(𝑥𝐵, , 𝑔) → (𝑥) = (if(𝑥𝐵, , 𝑔)‘𝑥))
1514eleq1d 2825 . . . . . . . . . . . . . . . . 17 ( = if(𝑥𝐵, , 𝑔) → ((𝑥) ∈ 𝐶 ↔ (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
16 fveq1 6904 . . . . . . . . . . . . . . . . . 18 (𝑔 = if(𝑥𝐵, , 𝑔) → (𝑔𝑥) = (if(𝑥𝐵, , 𝑔)‘𝑥))
1716eleq1d 2825 . . . . . . . . . . . . . . . . 17 (𝑔 = if(𝑥𝐵, , 𝑔) → ((𝑔𝑥) ∈ 𝐶 ↔ (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
18 simpl 482 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) → (𝑥𝐵 → (𝑥) ∈ 𝐶))
1918imp 406 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) ∧ 𝑥𝐵) → (𝑥) ∈ 𝐶)
20 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) ∧ ¬ 𝑥𝐵) → (𝑔𝑥) ∈ 𝐶)
2115, 17, 19, 20ifbothda 4563 . . . . . . . . . . . . . . . 16 (((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)
2221exp32 420 . . . . . . . . . . . . . . 15 ((𝑥𝐵 → (𝑥) ∈ 𝐶) → (𝑥𝐴 → ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)))
2322ralimi2 3077 . . . . . . . . . . . . . 14 (∀𝑥𝐵 (𝑥) ∈ 𝐶 → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2413, 23syl 17 . . . . . . . . . . . . 13 (X𝑥𝐵 𝐶 → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2524adantl 481 . . . . . . . . . . . 12 ((𝐵𝐴X𝑥𝐵 𝐶) → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
26 ralim 3085 . . . . . . . . . . . 12 (∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶) → (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶 → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2725, 26syl 17 . . . . . . . . . . 11 ((𝐵𝐴X𝑥𝐵 𝐶) → (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶 → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
28 vex 3483 . . . . . . . . . . . . 13 𝑔 ∈ V
2928elixp 8945 . . . . . . . . . . . 12 (𝑔X𝑥𝐴 𝐶 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶))
3029simprbi 496 . . . . . . . . . . 11 (𝑔X𝑥𝐴 𝐶 → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶)
3127, 30impel 505 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)
32 n0i 4339 . . . . . . . . . . . . 13 (𝑔X𝑥𝐴 𝐶 → ¬ X𝑥𝐴 𝐶 = ∅)
33 ixpprc 8960 . . . . . . . . . . . . 13 𝐴 ∈ V → X𝑥𝐴 𝐶 = ∅)
3432, 33nsyl2 141 . . . . . . . . . . . 12 (𝑔X𝑥𝐴 𝐶𝐴 ∈ V)
3534adantl 481 . . . . . . . . . . 11 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → 𝐴 ∈ V)
36 mptelixpg 8976 . . . . . . . . . . 11 (𝐴 ∈ V → ((𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
3735, 36syl 17 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
3831, 37mpbird 257 . . . . . . . . 9 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶)
3910, 38eqeltrid 2844 . . . . . . . 8 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ∈ X𝑥𝐴 𝐶)
40 reseq1 5990 . . . . . . . . . 10 (𝑓 = (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) → (𝑓𝐵) = ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵))
41 iftrue 4530 . . . . . . . . . . . . . 14 (𝑧𝐵 → if(𝑧𝐵, , 𝑔) = )
4241fveq1d 6907 . . . . . . . . . . . . 13 (𝑧𝐵 → (if(𝑧𝐵, , 𝑔)‘𝑧) = (𝑧))
4342mpteq2ia 5244 . . . . . . . . . . . 12 (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) = (𝑧𝐵 ↦ (𝑧))
44 resmpt 6054 . . . . . . . . . . . . 13 (𝐵𝐴 → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))
4544ad2antrr 726 . . . . . . . . . . . 12 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))
46 ixpfn 8944 . . . . . . . . . . . . . 14 (X𝑥𝐵 𝐶 Fn 𝐵)
4746ad2antlr 727 . . . . . . . . . . . . 13 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → Fn 𝐵)
48 dffn5 6966 . . . . . . . . . . . . 13 ( Fn 𝐵 = (𝑧𝐵 ↦ (𝑧)))
4947, 48sylib 218 . . . . . . . . . . . 12 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → = (𝑧𝐵 ↦ (𝑧)))
5043, 45, 493eqtr4a 2802 . . . . . . . . . . 11 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = )
5150, 11eqeltrdi 2848 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) ∈ V)
522, 40, 39, 51fvmptd3 7038 . . . . . . . . 9 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))) = ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵))
5352, 50eqtr2d 2777 . . . . . . . 8 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))))
54 fveq2 6905 . . . . . . . . 9 (𝑦 = (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) → (𝐹𝑦) = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))))
5554rspceeqv 3644 . . . . . . . 8 (((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ∈ X𝑥𝐴 𝐶 = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))) → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
5639, 53, 55syl2anc 584 . . . . . . 7 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
5756ex 412 . . . . . 6 ((𝐵𝐴X𝑥𝐵 𝐶) → (𝑔X𝑥𝐴 𝐶 → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
5857ralrimdva 3153 . . . . 5 (𝐵𝐴 → (𝑔X𝑥𝐴 𝐶 → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
5958exlimdv 1932 . . . 4 (𝐵𝐴 → (∃𝑔 𝑔X𝑥𝐴 𝐶 → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
605, 59biimtrid 242 . . 3 (𝐵𝐴 → (X𝑥𝐴 𝐶 ≠ ∅ → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
6160imp 406 . 2 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
62 dffo3 7121 . 2 (𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶 ↔ (𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶 ∧ ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
634, 61, 62sylanbrc 583 1 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2939  wral 3060  wrex 3069  Vcvv 3479  wss 3950  c0 4332  ifcif 4524  cmpt 5224  cres 5686   Fn wfn 6555  wf 6556  ontowfo 6558  cfv 6560  Xcixp 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ixp 8939
This theorem is referenced by:  ptcmplem2  24062
  Copyright terms: Public domain W3C validator