MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resixpfo Structured version   Visualization version   GIF version

Theorem resixpfo 8724
Description: Restriction of elements of an infinite Cartesian product creates a surjection, if the original Cartesian product is nonempty. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
resixpfo.1 𝐹 = (𝑓X𝑥𝐴 𝐶 ↦ (𝑓𝐵))
Assertion
Ref Expression
resixpfo ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓,𝑥   𝐶,𝑓
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥,𝑓)

Proof of Theorem resixpfo
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resixp 8721 . . . 4 ((𝐵𝐴𝑓X𝑥𝐴 𝐶) → (𝑓𝐵) ∈ X𝑥𝐵 𝐶)
2 resixpfo.1 . . . 4 𝐹 = (𝑓X𝑥𝐴 𝐶 ↦ (𝑓𝐵))
31, 2fmptd 6988 . . 3 (𝐵𝐴𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶)
43adantr 481 . 2 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶)
5 n0 4280 . . . 4 (X𝑥𝐴 𝐶 ≠ ∅ ↔ ∃𝑔 𝑔X𝑥𝐴 𝐶)
6 eleq1w 2821 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
76ifbid 4482 . . . . . . . . . . 11 (𝑧 = 𝑥 → if(𝑧𝐵, , 𝑔) = if(𝑥𝐵, , 𝑔))
8 id 22 . . . . . . . . . . 11 (𝑧 = 𝑥𝑧 = 𝑥)
97, 8fveq12d 6781 . . . . . . . . . 10 (𝑧 = 𝑥 → (if(𝑧𝐵, , 𝑔)‘𝑧) = (if(𝑥𝐵, , 𝑔)‘𝑥))
109cbvmptv 5187 . . . . . . . . 9 (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) = (𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥))
11 vex 3436 . . . . . . . . . . . . . . . 16 ∈ V
1211elixp 8692 . . . . . . . . . . . . . . 15 (X𝑥𝐵 𝐶 ↔ ( Fn 𝐵 ∧ ∀𝑥𝐵 (𝑥) ∈ 𝐶))
1312simprbi 497 . . . . . . . . . . . . . 14 (X𝑥𝐵 𝐶 → ∀𝑥𝐵 (𝑥) ∈ 𝐶)
14 fveq1 6773 . . . . . . . . . . . . . . . . . 18 ( = if(𝑥𝐵, , 𝑔) → (𝑥) = (if(𝑥𝐵, , 𝑔)‘𝑥))
1514eleq1d 2823 . . . . . . . . . . . . . . . . 17 ( = if(𝑥𝐵, , 𝑔) → ((𝑥) ∈ 𝐶 ↔ (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
16 fveq1 6773 . . . . . . . . . . . . . . . . . 18 (𝑔 = if(𝑥𝐵, , 𝑔) → (𝑔𝑥) = (if(𝑥𝐵, , 𝑔)‘𝑥))
1716eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑔 = if(𝑥𝐵, , 𝑔) → ((𝑔𝑥) ∈ 𝐶 ↔ (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
18 simpl 483 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) → (𝑥𝐵 → (𝑥) ∈ 𝐶))
1918imp 407 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) ∧ 𝑥𝐵) → (𝑥) ∈ 𝐶)
20 simplrr 775 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) ∧ ¬ 𝑥𝐵) → (𝑔𝑥) ∈ 𝐶)
2115, 17, 19, 20ifbothda 4497 . . . . . . . . . . . . . . . 16 (((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)
2221exp32 421 . . . . . . . . . . . . . . 15 ((𝑥𝐵 → (𝑥) ∈ 𝐶) → (𝑥𝐴 → ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)))
2322ralimi2 3084 . . . . . . . . . . . . . 14 (∀𝑥𝐵 (𝑥) ∈ 𝐶 → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2413, 23syl 17 . . . . . . . . . . . . 13 (X𝑥𝐵 𝐶 → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2524adantl 482 . . . . . . . . . . . 12 ((𝐵𝐴X𝑥𝐵 𝐶) → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
26 ralim 3083 . . . . . . . . . . . 12 (∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶) → (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶 → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2725, 26syl 17 . . . . . . . . . . 11 ((𝐵𝐴X𝑥𝐵 𝐶) → (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶 → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
28 vex 3436 . . . . . . . . . . . . 13 𝑔 ∈ V
2928elixp 8692 . . . . . . . . . . . 12 (𝑔X𝑥𝐴 𝐶 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶))
3029simprbi 497 . . . . . . . . . . 11 (𝑔X𝑥𝐴 𝐶 → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶)
3127, 30impel 506 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)
32 n0i 4267 . . . . . . . . . . . . 13 (𝑔X𝑥𝐴 𝐶 → ¬ X𝑥𝐴 𝐶 = ∅)
33 ixpprc 8707 . . . . . . . . . . . . 13 𝐴 ∈ V → X𝑥𝐴 𝐶 = ∅)
3432, 33nsyl2 141 . . . . . . . . . . . 12 (𝑔X𝑥𝐴 𝐶𝐴 ∈ V)
3534adantl 482 . . . . . . . . . . 11 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → 𝐴 ∈ V)
36 mptelixpg 8723 . . . . . . . . . . 11 (𝐴 ∈ V → ((𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
3735, 36syl 17 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
3831, 37mpbird 256 . . . . . . . . 9 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶)
3910, 38eqeltrid 2843 . . . . . . . 8 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ∈ X𝑥𝐴 𝐶)
40 reseq1 5885 . . . . . . . . . 10 (𝑓 = (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) → (𝑓𝐵) = ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵))
41 iftrue 4465 . . . . . . . . . . . . . 14 (𝑧𝐵 → if(𝑧𝐵, , 𝑔) = )
4241fveq1d 6776 . . . . . . . . . . . . 13 (𝑧𝐵 → (if(𝑧𝐵, , 𝑔)‘𝑧) = (𝑧))
4342mpteq2ia 5177 . . . . . . . . . . . 12 (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) = (𝑧𝐵 ↦ (𝑧))
44 resmpt 5945 . . . . . . . . . . . . 13 (𝐵𝐴 → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))
4544ad2antrr 723 . . . . . . . . . . . 12 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))
46 ixpfn 8691 . . . . . . . . . . . . . 14 (X𝑥𝐵 𝐶 Fn 𝐵)
4746ad2antlr 724 . . . . . . . . . . . . 13 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → Fn 𝐵)
48 dffn5 6828 . . . . . . . . . . . . 13 ( Fn 𝐵 = (𝑧𝐵 ↦ (𝑧)))
4947, 48sylib 217 . . . . . . . . . . . 12 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → = (𝑧𝐵 ↦ (𝑧)))
5043, 45, 493eqtr4a 2804 . . . . . . . . . . 11 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = )
5150, 11eqeltrdi 2847 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) ∈ V)
522, 40, 39, 51fvmptd3 6898 . . . . . . . . 9 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))) = ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵))
5352, 50eqtr2d 2779 . . . . . . . 8 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))))
54 fveq2 6774 . . . . . . . . 9 (𝑦 = (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) → (𝐹𝑦) = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))))
5554rspceeqv 3575 . . . . . . . 8 (((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ∈ X𝑥𝐴 𝐶 = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))) → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
5639, 53, 55syl2anc 584 . . . . . . 7 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
5756ex 413 . . . . . 6 ((𝐵𝐴X𝑥𝐵 𝐶) → (𝑔X𝑥𝐴 𝐶 → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
5857ralrimdva 3106 . . . . 5 (𝐵𝐴 → (𝑔X𝑥𝐴 𝐶 → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
5958exlimdv 1936 . . . 4 (𝐵𝐴 → (∃𝑔 𝑔X𝑥𝐴 𝐶 → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
605, 59syl5bi 241 . . 3 (𝐵𝐴 → (X𝑥𝐴 𝐶 ≠ ∅ → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
6160imp 407 . 2 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
62 dffo3 6978 . 2 (𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶 ↔ (𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶 ∧ ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
634, 61, 62sylanbrc 583 1 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256  ifcif 4459  cmpt 5157  cres 5591   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  Xcixp 8685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ixp 8686
This theorem is referenced by:  ptcmplem2  23204
  Copyright terms: Public domain W3C validator