MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resixpfo Structured version   Visualization version   GIF version

Theorem resixpfo 8866
Description: Restriction of elements of an infinite Cartesian product creates a surjection, if the original Cartesian product is nonempty. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
resixpfo.1 𝐹 = (𝑓X𝑥𝐴 𝐶 ↦ (𝑓𝐵))
Assertion
Ref Expression
resixpfo ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓,𝑥   𝐶,𝑓
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥,𝑓)

Proof of Theorem resixpfo
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resixp 8863 . . . 4 ((𝐵𝐴𝑓X𝑥𝐴 𝐶) → (𝑓𝐵) ∈ X𝑥𝐵 𝐶)
2 resixpfo.1 . . . 4 𝐹 = (𝑓X𝑥𝐴 𝐶 ↦ (𝑓𝐵))
31, 2fmptd 7053 . . 3 (𝐵𝐴𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶)
43adantr 480 . 2 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶)
5 n0 4302 . . . 4 (X𝑥𝐴 𝐶 ≠ ∅ ↔ ∃𝑔 𝑔X𝑥𝐴 𝐶)
6 eleq1w 2816 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
76ifbid 4498 . . . . . . . . . . 11 (𝑧 = 𝑥 → if(𝑧𝐵, , 𝑔) = if(𝑥𝐵, , 𝑔))
8 id 22 . . . . . . . . . . 11 (𝑧 = 𝑥𝑧 = 𝑥)
97, 8fveq12d 6835 . . . . . . . . . 10 (𝑧 = 𝑥 → (if(𝑧𝐵, , 𝑔)‘𝑧) = (if(𝑥𝐵, , 𝑔)‘𝑥))
109cbvmptv 5197 . . . . . . . . 9 (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) = (𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥))
11 vex 3441 . . . . . . . . . . . . . . . 16 ∈ V
1211elixp 8834 . . . . . . . . . . . . . . 15 (X𝑥𝐵 𝐶 ↔ ( Fn 𝐵 ∧ ∀𝑥𝐵 (𝑥) ∈ 𝐶))
1312simprbi 496 . . . . . . . . . . . . . 14 (X𝑥𝐵 𝐶 → ∀𝑥𝐵 (𝑥) ∈ 𝐶)
14 fveq1 6827 . . . . . . . . . . . . . . . . . 18 ( = if(𝑥𝐵, , 𝑔) → (𝑥) = (if(𝑥𝐵, , 𝑔)‘𝑥))
1514eleq1d 2818 . . . . . . . . . . . . . . . . 17 ( = if(𝑥𝐵, , 𝑔) → ((𝑥) ∈ 𝐶 ↔ (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
16 fveq1 6827 . . . . . . . . . . . . . . . . . 18 (𝑔 = if(𝑥𝐵, , 𝑔) → (𝑔𝑥) = (if(𝑥𝐵, , 𝑔)‘𝑥))
1716eleq1d 2818 . . . . . . . . . . . . . . . . 17 (𝑔 = if(𝑥𝐵, , 𝑔) → ((𝑔𝑥) ∈ 𝐶 ↔ (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
18 simpl 482 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) → (𝑥𝐵 → (𝑥) ∈ 𝐶))
1918imp 406 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) ∧ 𝑥𝐵) → (𝑥) ∈ 𝐶)
20 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) ∧ ¬ 𝑥𝐵) → (𝑔𝑥) ∈ 𝐶)
2115, 17, 19, 20ifbothda 4513 . . . . . . . . . . . . . . . 16 (((𝑥𝐵 → (𝑥) ∈ 𝐶) ∧ (𝑥𝐴 ∧ (𝑔𝑥) ∈ 𝐶)) → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)
2221exp32 420 . . . . . . . . . . . . . . 15 ((𝑥𝐵 → (𝑥) ∈ 𝐶) → (𝑥𝐴 → ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)))
2322ralimi2 3065 . . . . . . . . . . . . . 14 (∀𝑥𝐵 (𝑥) ∈ 𝐶 → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2413, 23syl 17 . . . . . . . . . . . . 13 (X𝑥𝐵 𝐶 → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2524adantl 481 . . . . . . . . . . . 12 ((𝐵𝐴X𝑥𝐵 𝐶) → ∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
26 ralim 3073 . . . . . . . . . . . 12 (∀𝑥𝐴 ((𝑔𝑥) ∈ 𝐶 → (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶) → (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶 → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
2725, 26syl 17 . . . . . . . . . . 11 ((𝐵𝐴X𝑥𝐵 𝐶) → (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶 → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
28 vex 3441 . . . . . . . . . . . . 13 𝑔 ∈ V
2928elixp 8834 . . . . . . . . . . . 12 (𝑔X𝑥𝐴 𝐶 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶))
3029simprbi 496 . . . . . . . . . . 11 (𝑔X𝑥𝐴 𝐶 → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐶)
3127, 30impel 505 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶)
32 n0i 4289 . . . . . . . . . . . . 13 (𝑔X𝑥𝐴 𝐶 → ¬ X𝑥𝐴 𝐶 = ∅)
33 ixpprc 8849 . . . . . . . . . . . . 13 𝐴 ∈ V → X𝑥𝐴 𝐶 = ∅)
3432, 33nsyl2 141 . . . . . . . . . . . 12 (𝑔X𝑥𝐴 𝐶𝐴 ∈ V)
3534adantl 481 . . . . . . . . . . 11 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → 𝐴 ∈ V)
36 mptelixpg 8865 . . . . . . . . . . 11 (𝐴 ∈ V → ((𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
3735, 36syl 17 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 (if(𝑥𝐵, , 𝑔)‘𝑥) ∈ 𝐶))
3831, 37mpbird 257 . . . . . . . . 9 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝑥𝐴 ↦ (if(𝑥𝐵, , 𝑔)‘𝑥)) ∈ X𝑥𝐴 𝐶)
3910, 38eqeltrid 2837 . . . . . . . 8 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ∈ X𝑥𝐴 𝐶)
40 reseq1 5926 . . . . . . . . . 10 (𝑓 = (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) → (𝑓𝐵) = ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵))
41 iftrue 4480 . . . . . . . . . . . . . 14 (𝑧𝐵 → if(𝑧𝐵, , 𝑔) = )
4241fveq1d 6830 . . . . . . . . . . . . 13 (𝑧𝐵 → (if(𝑧𝐵, , 𝑔)‘𝑧) = (𝑧))
4342mpteq2ia 5188 . . . . . . . . . . . 12 (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) = (𝑧𝐵 ↦ (𝑧))
44 resmpt 5990 . . . . . . . . . . . . 13 (𝐵𝐴 → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))
4544ad2antrr 726 . . . . . . . . . . . 12 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = (𝑧𝐵 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))
46 ixpfn 8833 . . . . . . . . . . . . . 14 (X𝑥𝐵 𝐶 Fn 𝐵)
4746ad2antlr 727 . . . . . . . . . . . . 13 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → Fn 𝐵)
48 dffn5 6886 . . . . . . . . . . . . 13 ( Fn 𝐵 = (𝑧𝐵 ↦ (𝑧)))
4947, 48sylib 218 . . . . . . . . . . . 12 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → = (𝑧𝐵 ↦ (𝑧)))
5043, 45, 493eqtr4a 2794 . . . . . . . . . . 11 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) = )
5150, 11eqeltrdi 2841 . . . . . . . . . 10 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵) ∈ V)
522, 40, 39, 51fvmptd3 6958 . . . . . . . . 9 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))) = ((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ↾ 𝐵))
5352, 50eqtr2d 2769 . . . . . . . 8 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))))
54 fveq2 6828 . . . . . . . . 9 (𝑦 = (𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) → (𝐹𝑦) = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧))))
5554rspceeqv 3596 . . . . . . . 8 (((𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)) ∈ X𝑥𝐴 𝐶 = (𝐹‘(𝑧𝐴 ↦ (if(𝑧𝐵, , 𝑔)‘𝑧)))) → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
5639, 53, 55syl2anc 584 . . . . . . 7 (((𝐵𝐴X𝑥𝐵 𝐶) ∧ 𝑔X𝑥𝐴 𝐶) → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
5756ex 412 . . . . . 6 ((𝐵𝐴X𝑥𝐵 𝐶) → (𝑔X𝑥𝐴 𝐶 → ∃𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
5857ralrimdva 3133 . . . . 5 (𝐵𝐴 → (𝑔X𝑥𝐴 𝐶 → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
5958exlimdv 1934 . . . 4 (𝐵𝐴 → (∃𝑔 𝑔X𝑥𝐴 𝐶 → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
605, 59biimtrid 242 . . 3 (𝐵𝐴 → (X𝑥𝐴 𝐶 ≠ ∅ → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
6160imp 406 . 2 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦))
62 dffo3 7041 . 2 (𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶 ↔ (𝐹:X𝑥𝐴 𝐶X𝑥𝐵 𝐶 ∧ ∀X 𝑥𝐵 𝐶𝑦X 𝑥𝐴 𝐶 = (𝐹𝑦)))
634, 61, 62sylanbrc 583 1 ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  wss 3898  c0 4282  ifcif 4474  cmpt 5174  cres 5621   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  Xcixp 8827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ixp 8828
This theorem is referenced by:  ptcmplem2  23969
  Copyright terms: Public domain W3C validator