MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbseqiALT Structured version   Visualization version   GIF version

Theorem nmounbseqiALT 29041
Description: Alternate shorter proof of nmounbseqi 29040 based on Axioms ax-reg 9281 and ax-ac2 10150 instead of ax-cc 10122. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmounbseqiALT ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
Distinct variable groups:   𝑓,𝑘,𝐿   𝑘,𝑌   𝑓,𝑀,𝑘   𝑇,𝑓,𝑘   𝑓,𝑋,𝑘   𝑘,𝑁
Allowed substitution hints:   𝑈(𝑓,𝑘)   𝑁(𝑓)   𝑊(𝑓,𝑘)   𝑌(𝑓)

Proof of Theorem nmounbseqiALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
4 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
5 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
6 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
7 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
81, 2, 3, 4, 5, 6, 7nmounbi 29039 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))))
98biimpa 476 . 2 ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))))
10 nnre 11910 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
1110imim1i 63 . . 3 ((𝑘 ∈ ℝ → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))) → (𝑘 ∈ ℕ → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))))
1211ralimi2 3083 . 2 (∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) → ∀𝑘 ∈ ℕ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))))
13 nnex 11909 . . 3 ℕ ∈ V
14 fveq2 6756 . . . . 5 (𝑦 = (𝑓𝑘) → (𝐿𝑦) = (𝐿‘(𝑓𝑘)))
1514breq1d 5080 . . . 4 (𝑦 = (𝑓𝑘) → ((𝐿𝑦) ≤ 1 ↔ (𝐿‘(𝑓𝑘)) ≤ 1))
16 fveq2 6756 . . . . . 6 (𝑦 = (𝑓𝑘) → (𝑇𝑦) = (𝑇‘(𝑓𝑘)))
1716fveq2d 6760 . . . . 5 (𝑦 = (𝑓𝑘) → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇‘(𝑓𝑘))))
1817breq2d 5082 . . . 4 (𝑦 = (𝑓𝑘) → (𝑘 < (𝑀‘(𝑇𝑦)) ↔ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘)))))
1915, 18anbi12d 630 . . 3 (𝑦 = (𝑓𝑘) → (((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) ↔ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
2013, 19ac6s 10171 . 2 (∀𝑘 ∈ ℕ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
219, 12, 203syl 18 1 ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803  +∞cpnf 10937   < clt 10940  cle 10941  cn 11903  NrmCVeccnv 28847  BaseSetcba 28849  normCVcnmcv 28853   normOpOLD cnmoo 29004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-r1 9453  df-rank 9454  df-card 9628  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-nmoo 29008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator