MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbseqiALT Structured version   Visualization version   GIF version

Theorem nmounbseqiALT 30798
Description: Alternate shorter proof of nmounbseqi 30797 based on Axioms ax-reg 9633 and ax-ac2 10504 instead of ax-cc 10476. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmounbseqiALT ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
Distinct variable groups:   𝑓,𝑘,𝐿   𝑘,𝑌   𝑓,𝑀,𝑘   𝑇,𝑓,𝑘   𝑓,𝑋,𝑘   𝑘,𝑁
Allowed substitution hints:   𝑈(𝑓,𝑘)   𝑁(𝑓)   𝑊(𝑓,𝑘)   𝑌(𝑓)

Proof of Theorem nmounbseqiALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
4 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
5 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
6 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
7 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
81, 2, 3, 4, 5, 6, 7nmounbi 30796 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))))
98biimpa 476 . 2 ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))))
10 nnre 12274 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
1110imim1i 63 . . 3 ((𝑘 ∈ ℝ → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))) → (𝑘 ∈ ℕ → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦)))))
1211ralimi2 3077 . 2 (∀𝑘 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) → ∀𝑘 ∈ ℕ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))))
13 nnex 12273 . . 3 ℕ ∈ V
14 fveq2 6905 . . . . 5 (𝑦 = (𝑓𝑘) → (𝐿𝑦) = (𝐿‘(𝑓𝑘)))
1514breq1d 5152 . . . 4 (𝑦 = (𝑓𝑘) → ((𝐿𝑦) ≤ 1 ↔ (𝐿‘(𝑓𝑘)) ≤ 1))
16 fveq2 6905 . . . . . 6 (𝑦 = (𝑓𝑘) → (𝑇𝑦) = (𝑇‘(𝑓𝑘)))
1716fveq2d 6909 . . . . 5 (𝑦 = (𝑓𝑘) → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇‘(𝑓𝑘))))
1817breq2d 5154 . . . 4 (𝑦 = (𝑓𝑘) → (𝑘 < (𝑀‘(𝑇𝑦)) ↔ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘)))))
1915, 18anbi12d 632 . . 3 (𝑦 = (𝑓𝑘) → (((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) ↔ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
2013, 19ac6s 10525 . 2 (∀𝑘 ∈ ℕ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇𝑦))) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
219, 12, 203syl 18 1 ((𝑇:𝑋𝑌 ∧ (𝑁𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wral 3060  wrex 3069   class class class wbr 5142  wf 6556  cfv 6560  (class class class)co 7432  cr 11155  1c1 11157  +∞cpnf 11293   < clt 11296  cle 11297  cn 12267  NrmCVeccnv 30604  BaseSetcba 30606  normCVcnmcv 30610   normOpOLD cnmoo 30761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-reg 9633  ax-inf2 9682  ax-ac2 10504  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-r1 9805  df-rank 9806  df-card 9980  df-ac 10157  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-grpo 30513  df-gid 30514  df-ginv 30515  df-ablo 30565  df-vc 30579  df-nv 30612  df-va 30615  df-ba 30616  df-sm 30617  df-0v 30618  df-nmcv 30620  df-nmoo 30765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator