![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmounbseqiALT | Structured version Visualization version GIF version |
Description: Alternate shorter proof of nmounbseqi 30626 based on Axioms ax-reg 9610 and ax-ac2 10481 instead of ax-cc 10453. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nmoubi.1 | β’ π = (BaseSetβπ) |
nmoubi.y | β’ π = (BaseSetβπ) |
nmoubi.l | β’ πΏ = (normCVβπ) |
nmoubi.m | β’ π = (normCVβπ) |
nmoubi.3 | β’ π = (π normOpOLD π) |
nmoubi.u | β’ π β NrmCVec |
nmoubi.w | β’ π β NrmCVec |
Ref | Expression |
---|---|
nmounbseqiALT | β’ ((π:πβΆπ β§ (πβπ) = +β) β βπ(π:ββΆπ β§ βπ β β ((πΏβ(πβπ)) β€ 1 β§ π < (πβ(πβ(πβπ)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoubi.1 | . . . 4 β’ π = (BaseSetβπ) | |
2 | nmoubi.y | . . . 4 β’ π = (BaseSetβπ) | |
3 | nmoubi.l | . . . 4 β’ πΏ = (normCVβπ) | |
4 | nmoubi.m | . . . 4 β’ π = (normCVβπ) | |
5 | nmoubi.3 | . . . 4 β’ π = (π normOpOLD π) | |
6 | nmoubi.u | . . . 4 β’ π β NrmCVec | |
7 | nmoubi.w | . . . 4 β’ π β NrmCVec | |
8 | 1, 2, 3, 4, 5, 6, 7 | nmounbi 30625 | . . 3 β’ (π:πβΆπ β ((πβπ) = +β β βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦))))) |
9 | 8 | biimpa 475 | . 2 β’ ((π:πβΆπ β§ (πβπ) = +β) β βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦)))) |
10 | nnre 12244 | . . . 4 β’ (π β β β π β β) | |
11 | 10 | imim1i 63 | . . 3 β’ ((π β β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦)))) β (π β β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦))))) |
12 | 11 | ralimi2 3068 | . 2 β’ (βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦))) β βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦)))) |
13 | nnex 12243 | . . 3 β’ β β V | |
14 | fveq2 6890 | . . . . 5 β’ (π¦ = (πβπ) β (πΏβπ¦) = (πΏβ(πβπ))) | |
15 | 14 | breq1d 5154 | . . . 4 β’ (π¦ = (πβπ) β ((πΏβπ¦) β€ 1 β (πΏβ(πβπ)) β€ 1)) |
16 | fveq2 6890 | . . . . . 6 β’ (π¦ = (πβπ) β (πβπ¦) = (πβ(πβπ))) | |
17 | 16 | fveq2d 6894 | . . . . 5 β’ (π¦ = (πβπ) β (πβ(πβπ¦)) = (πβ(πβ(πβπ)))) |
18 | 17 | breq2d 5156 | . . . 4 β’ (π¦ = (πβπ) β (π < (πβ(πβπ¦)) β π < (πβ(πβ(πβπ))))) |
19 | 15, 18 | anbi12d 630 | . . 3 β’ (π¦ = (πβπ) β (((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦))) β ((πΏβ(πβπ)) β€ 1 β§ π < (πβ(πβ(πβπ)))))) |
20 | 13, 19 | ac6s 10502 | . 2 β’ (βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β§ π < (πβ(πβπ¦))) β βπ(π:ββΆπ β§ βπ β β ((πΏβ(πβπ)) β€ 1 β§ π < (πβ(πβ(πβπ)))))) |
21 | 9, 12, 20 | 3syl 18 | 1 β’ ((π:πβΆπ β§ (πβπ) = +β) β βπ(π:ββΆπ β§ βπ β β ((πΏβ(πβπ)) β€ 1 β§ π < (πβ(πβ(πβπ)))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 βwex 1773 β wcel 2098 βwral 3051 βwrex 3060 class class class wbr 5144 βΆwf 6539 βcfv 6543 (class class class)co 7413 βcr 11132 1c1 11134 +βcpnf 11270 < clt 11273 β€ cle 11274 βcn 12237 NrmCVeccnv 30433 BaseSetcba 30435 normCVcnmcv 30439 normOpOLD cnmoo 30590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-reg 9610 ax-inf2 9659 ax-ac2 10481 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9460 df-r1 9782 df-rank 9783 df-card 9957 df-ac 10134 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-seq 13994 df-exp 14054 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-grpo 30342 df-gid 30343 df-ginv 30344 df-ablo 30394 df-vc 30408 df-nv 30441 df-va 30444 df-ba 30445 df-sm 30446 df-0v 30447 df-nmcv 30449 df-nmoo 30594 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |