|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nmounbseqiALT | Structured version Visualization version GIF version | ||
| Description: Alternate shorter proof of nmounbseqi 30797 based on Axioms ax-reg 9633 and ax-ac2 10504 instead of ax-cc 10476. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) | 
| nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) | 
| nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) | 
| nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) | 
| nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | 
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | 
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | 
| Ref | Expression | 
|---|---|
| nmounbseqiALT | ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nmoubi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nmoubi.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 3 | nmoubi.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
| 4 | nmoubi.m | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
| 5 | nmoubi.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 6 | nmoubi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | nmounbi 30796 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑘 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))))) | 
| 9 | 8 | biimpa 476 | . 2 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∀𝑘 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦)))) | 
| 10 | nnre 12274 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
| 11 | 10 | imim1i 63 | . . 3 ⊢ ((𝑘 ∈ ℝ → ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦)))) → (𝑘 ∈ ℕ → ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))))) | 
| 12 | 11 | ralimi2 3077 | . 2 ⊢ (∀𝑘 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))) → ∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦)))) | 
| 13 | nnex 12273 | . . 3 ⊢ ℕ ∈ V | |
| 14 | fveq2 6905 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑘) → (𝐿‘𝑦) = (𝐿‘(𝑓‘𝑘))) | |
| 15 | 14 | breq1d 5152 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑘) → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘(𝑓‘𝑘)) ≤ 1)) | 
| 16 | fveq2 6905 | . . . . . 6 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑇‘𝑦) = (𝑇‘(𝑓‘𝑘))) | |
| 17 | 16 | fveq2d 6909 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘(𝑓‘𝑘)))) | 
| 18 | 17 | breq2d 5154 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑘 < (𝑀‘(𝑇‘𝑦)) ↔ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘))))) | 
| 19 | 15, 18 | anbi12d 632 | . . 3 ⊢ (𝑦 = (𝑓‘𝑘) → (((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))) ↔ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) | 
| 20 | 13, 19 | ac6s 10525 | . 2 ⊢ (∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘𝑦))) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) | 
| 21 | 9, 12, 20 | 3syl 18 | 1 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 class class class wbr 5142 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 1c1 11157 +∞cpnf 11293 < clt 11296 ≤ cle 11297 ℕcn 12267 NrmCVeccnv 30604 BaseSetcba 30606 normCVcnmcv 30610 normOpOLD cnmoo 30761 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-reg 9633 ax-inf2 9682 ax-ac2 10504 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-r1 9805 df-rank 9806 df-card 9980 df-ac 10157 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-grpo 30513 df-gid 30514 df-ginv 30515 df-ablo 30565 df-vc 30579 df-nv 30612 df-va 30615 df-ba 30616 df-sm 30617 df-0v 30618 df-nmcv 30620 df-nmoo 30765 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |