MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximi2 Structured version   Visualization version   GIF version

Theorem reximi2 3080
Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
Hypothesis
Ref Expression
reximi2.1 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
reximi2 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)

Proof of Theorem reximi2
StepHypRef Expression
1 reximi2.1 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
21eximi 1838 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3072 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3072 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43imtr4i 292 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wex 1782  wcel 2107  wrex 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-rex 3072
This theorem is referenced by:  reximia  3082  pssnn  9168  pssnnOLD  9265  btwnz  12665  xrsupexmnf  13284  xrinfmexpnf  13285  xrsupsslem  13286  xrinfmsslem  13287  supxrun  13295  ioo0  13349  hashgt23el  14384  resqrex  15197  resqreu  15199  rexuzre  15299  neiptopnei  22636  comppfsc  23036  filssufilg  23415  alexsubALTlem4  23554  lgsquadlem2  26884  nmobndseqi  30032  nmobndseqiALT  30033  pjnmopi  31401  crefdf  32828  dya2iocuni  33282  ballotlemfc0  33491  ballotlemfcc  33492  ballotlemsup  33503  fnrelpredd  34092  poimirlem32  36520  sstotbnd3  36644  lsateln0  37865  pclcmpatN  38772  aaitgo  41904  stoweidlem14  44730  stoweidlem57  44773  elaa2  44950
  Copyright terms: Public domain W3C validator