MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximi2 Structured version   Visualization version   GIF version

Theorem reximi2 3077
Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
Hypothesis
Ref Expression
reximi2.1 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
reximi2 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)

Proof of Theorem reximi2
StepHypRef Expression
1 reximi2.1 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
21eximi 1832 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3069 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3069 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43imtr4i 292 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1776  wcel 2106  wrex 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-ex 1777  df-rex 3069
This theorem is referenced by:  reximia  3079  pssnn  9207  btwnz  12719  xrsupexmnf  13344  xrinfmexpnf  13345  xrsupsslem  13346  xrinfmsslem  13347  supxrun  13355  ioo0  13409  hashgt23el  14460  resqrex  15286  resqreu  15288  rexuzre  15388  neiptopnei  23156  comppfsc  23556  filssufilg  23935  alexsubALTlem4  24074  lgsquadlem2  27440  nmobndseqi  30808  nmobndseqiALT  30809  pjnmopi  32177  crefdf  33809  dya2iocuni  34265  ballotlemfc0  34474  ballotlemfcc  34475  ballotlemsup  34486  fnrelpredd  35082  poimirlem32  37639  sstotbnd3  37763  lsateln0  38977  pclcmpatN  39884  aaitgo  43151  stoweidlem14  45970  stoweidlem57  46013  elaa2  46190
  Copyright terms: Public domain W3C validator