MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximi2 Structured version   Visualization version   GIF version

Theorem reximi2 3065
Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
Hypothesis
Ref Expression
reximi2.1 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
reximi2 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)

Proof of Theorem reximi2
StepHypRef Expression
1 reximi2.1 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
21eximi 1836 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3057 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3057 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43imtr4i 292 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2111  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-rex 3057
This theorem is referenced by:  reximia  3067  pssnn  9078  btwnz  12573  xrsupexmnf  13201  xrinfmexpnf  13202  xrsupsslem  13203  xrinfmsslem  13204  supxrun  13212  ioo0  13267  hashgt23el  14328  resqrex  15154  resqreu  15156  rexuzre  15257  neiptopnei  23045  comppfsc  23445  filssufilg  23824  alexsubALTlem4  23963  lgsquadlem2  27317  nmobndseqi  30754  nmobndseqiALT  30755  pjnmopi  32123  crefdf  33856  dya2iocuni  34291  ballotlemfc0  34501  ballotlemfcc  34502  ballotlemsup  34513  fnrelpredd  35097  poimirlem32  37691  sstotbnd3  37815  lsateln0  39033  pclcmpatN  39939  aaitgo  43194  stoweidlem14  46051  stoweidlem57  46094  elaa2  46271
  Copyright terms: Public domain W3C validator