| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximi2 | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) |
| Ref | Expression |
|---|---|
| reximi2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| reximi2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 2 | 1 | eximi 1835 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
| 3 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reximia 3064 pssnn 9092 btwnz 12597 xrsupexmnf 13225 xrinfmexpnf 13226 xrsupsslem 13227 xrinfmsslem 13228 supxrun 13236 ioo0 13291 hashgt23el 14349 resqrex 15175 resqreu 15177 rexuzre 15278 neiptopnei 23035 comppfsc 23435 filssufilg 23814 alexsubALTlem4 23953 lgsquadlem2 27308 nmobndseqi 30741 nmobndseqiALT 30742 pjnmopi 32110 crefdf 33814 dya2iocuni 34250 ballotlemfc0 34460 ballotlemfcc 34461 ballotlemsup 34472 fnrelpredd 35055 poimirlem32 37631 sstotbnd3 37755 lsateln0 38973 pclcmpatN 39880 aaitgo 43135 stoweidlem14 45996 stoweidlem57 46039 elaa2 46216 |
| Copyright terms: Public domain | W3C validator |