| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximi2 | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) |
| Ref | Expression |
|---|---|
| reximi2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| reximi2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 2 | 1 | eximi 1835 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
| 3 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: reximia 3065 pssnn 9138 btwnz 12644 xrsupexmnf 13272 xrinfmexpnf 13273 xrsupsslem 13274 xrinfmsslem 13275 supxrun 13283 ioo0 13338 hashgt23el 14396 resqrex 15223 resqreu 15225 rexuzre 15326 neiptopnei 23026 comppfsc 23426 filssufilg 23805 alexsubALTlem4 23944 lgsquadlem2 27299 nmobndseqi 30715 nmobndseqiALT 30716 pjnmopi 32084 crefdf 33845 dya2iocuni 34281 ballotlemfc0 34491 ballotlemfcc 34492 ballotlemsup 34503 fnrelpredd 35086 poimirlem32 37653 sstotbnd3 37777 lsateln0 38995 pclcmpatN 39902 aaitgo 43158 stoweidlem14 46019 stoweidlem57 46062 elaa2 46239 |
| Copyright terms: Public domain | W3C validator |