MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximi2 Structured version   Visualization version   GIF version

Theorem reximi2 3062
Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
Hypothesis
Ref Expression
reximi2.1 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
reximi2 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)

Proof of Theorem reximi2
StepHypRef Expression
1 reximi2.1 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
21eximi 1835 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3054 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3054 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43imtr4i 292 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-rex 3054
This theorem is referenced by:  reximia  3064  pssnn  9132  btwnz  12637  xrsupexmnf  13265  xrinfmexpnf  13266  xrsupsslem  13267  xrinfmsslem  13268  supxrun  13276  ioo0  13331  hashgt23el  14389  resqrex  15216  resqreu  15218  rexuzre  15319  neiptopnei  23019  comppfsc  23419  filssufilg  23798  alexsubALTlem4  23937  lgsquadlem2  27292  nmobndseqi  30708  nmobndseqiALT  30709  pjnmopi  32077  crefdf  33838  dya2iocuni  34274  ballotlemfc0  34484  ballotlemfcc  34485  ballotlemsup  34496  fnrelpredd  35079  poimirlem32  37646  sstotbnd3  37770  lsateln0  38988  pclcmpatN  39895  aaitgo  43151  stoweidlem14  46012  stoweidlem57  46055  elaa2  46232
  Copyright terms: Public domain W3C validator