![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximi2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) |
Ref | Expression |
---|---|
reximi2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
Ref | Expression |
---|---|
reximi2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
2 | 1 | eximi 1832 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
3 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-rex 3069 |
This theorem is referenced by: reximia 3079 pssnn 9207 btwnz 12719 xrsupexmnf 13344 xrinfmexpnf 13345 xrsupsslem 13346 xrinfmsslem 13347 supxrun 13355 ioo0 13409 hashgt23el 14460 resqrex 15286 resqreu 15288 rexuzre 15388 neiptopnei 23156 comppfsc 23556 filssufilg 23935 alexsubALTlem4 24074 lgsquadlem2 27440 nmobndseqi 30808 nmobndseqiALT 30809 pjnmopi 32177 crefdf 33809 dya2iocuni 34265 ballotlemfc0 34474 ballotlemfcc 34475 ballotlemsup 34486 fnrelpredd 35082 poimirlem32 37639 sstotbnd3 37763 lsateln0 38977 pclcmpatN 39884 aaitgo 43151 stoweidlem14 45970 stoweidlem57 46013 elaa2 46190 |
Copyright terms: Public domain | W3C validator |