MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximi2 Structured version   Visualization version   GIF version

Theorem reximi2 3063
Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
Hypothesis
Ref Expression
reximi2.1 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
reximi2 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)

Proof of Theorem reximi2
StepHypRef Expression
1 reximi2.1 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
21eximi 1835 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3055 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3055 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43imtr4i 292 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-rex 3055
This theorem is referenced by:  reximia  3065  pssnn  9138  btwnz  12644  xrsupexmnf  13272  xrinfmexpnf  13273  xrsupsslem  13274  xrinfmsslem  13275  supxrun  13283  ioo0  13338  hashgt23el  14396  resqrex  15223  resqreu  15225  rexuzre  15326  neiptopnei  23026  comppfsc  23426  filssufilg  23805  alexsubALTlem4  23944  lgsquadlem2  27299  nmobndseqi  30715  nmobndseqiALT  30716  pjnmopi  32084  crefdf  33845  dya2iocuni  34281  ballotlemfc0  34491  ballotlemfcc  34492  ballotlemsup  34503  fnrelpredd  35086  poimirlem32  37653  sstotbnd3  37777  lsateln0  38995  pclcmpatN  39902  aaitgo  43158  stoweidlem14  46019  stoweidlem57  46062  elaa2  46239
  Copyright terms: Public domain W3C validator