![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximi2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) |
Ref | Expression |
---|---|
reximi2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
Ref | Expression |
---|---|
reximi2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
2 | 1 | eximi 1838 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
3 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-rex 3072 |
This theorem is referenced by: reximia 3082 pssnn 9168 pssnnOLD 9265 btwnz 12665 xrsupexmnf 13284 xrinfmexpnf 13285 xrsupsslem 13286 xrinfmsslem 13287 supxrun 13295 ioo0 13349 hashgt23el 14384 resqrex 15197 resqreu 15199 rexuzre 15299 neiptopnei 22636 comppfsc 23036 filssufilg 23415 alexsubALTlem4 23554 lgsquadlem2 26884 nmobndseqi 30032 nmobndseqiALT 30033 pjnmopi 31401 crefdf 32828 dya2iocuni 33282 ballotlemfc0 33491 ballotlemfcc 33492 ballotlemsup 33503 fnrelpredd 34092 poimirlem32 36520 sstotbnd3 36644 lsateln0 37865 pclcmpatN 38772 aaitgo 41904 stoweidlem14 44730 stoweidlem57 44773 elaa2 44950 |
Copyright terms: Public domain | W3C validator |