MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximi2 Structured version   Visualization version   GIF version

Theorem reximi2 3062
Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
Hypothesis
Ref Expression
reximi2.1 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
reximi2 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)

Proof of Theorem reximi2
StepHypRef Expression
1 reximi2.1 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
21eximi 1835 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3054 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3054 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43imtr4i 292 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-rex 3054
This theorem is referenced by:  reximia  3064  pssnn  9092  btwnz  12597  xrsupexmnf  13225  xrinfmexpnf  13226  xrsupsslem  13227  xrinfmsslem  13228  supxrun  13236  ioo0  13291  hashgt23el  14349  resqrex  15175  resqreu  15177  rexuzre  15278  neiptopnei  23035  comppfsc  23435  filssufilg  23814  alexsubALTlem4  23953  lgsquadlem2  27308  nmobndseqi  30741  nmobndseqiALT  30742  pjnmopi  32110  crefdf  33814  dya2iocuni  34250  ballotlemfc0  34460  ballotlemfcc  34461  ballotlemsup  34472  fnrelpredd  35055  poimirlem32  37631  sstotbnd3  37755  lsateln0  38973  pclcmpatN  39880  aaitgo  43135  stoweidlem14  45996  stoweidlem57  46039  elaa2  46216
  Copyright terms: Public domain W3C validator