| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximi2 | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) |
| Ref | Expression |
|---|---|
| reximi2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| reximi2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 2 | 1 | eximi 1835 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
| 3 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: reximia 3071 pssnn 9182 btwnz 12696 xrsupexmnf 13321 xrinfmexpnf 13322 xrsupsslem 13323 xrinfmsslem 13324 supxrun 13332 ioo0 13387 hashgt23el 14442 resqrex 15269 resqreu 15271 rexuzre 15371 neiptopnei 23070 comppfsc 23470 filssufilg 23849 alexsubALTlem4 23988 lgsquadlem2 27344 nmobndseqi 30760 nmobndseqiALT 30761 pjnmopi 32129 crefdf 33879 dya2iocuni 34315 ballotlemfc0 34525 ballotlemfcc 34526 ballotlemsup 34537 fnrelpredd 35120 poimirlem32 37676 sstotbnd3 37800 lsateln0 39013 pclcmpatN 39920 aaitgo 43186 stoweidlem14 46043 stoweidlem57 46086 elaa2 46263 |
| Copyright terms: Public domain | W3C validator |