| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximi2 | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) |
| Ref | Expression |
|---|---|
| reximi2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| reximi2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 2 | 1 | eximi 1836 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
| 3 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-rex 3058 |
| This theorem is referenced by: reximia 3068 pssnn 9085 btwnz 12582 xrsupexmnf 13206 xrinfmexpnf 13207 xrsupsslem 13208 xrinfmsslem 13209 supxrun 13217 ioo0 13272 hashgt23el 14333 resqrex 15159 resqreu 15161 rexuzre 15262 neiptopnei 23048 comppfsc 23448 filssufilg 23827 alexsubALTlem4 23966 lgsquadlem2 27320 nmobndseqi 30761 nmobndseqiALT 30762 pjnmopi 32130 crefdf 33882 dya2iocuni 34317 ballotlemfc0 34527 ballotlemfcc 34528 ballotlemsup 34539 fnrelpredd 35123 poimirlem32 37712 sstotbnd3 37836 lsateln0 39114 pclcmpatN 40020 aaitgo 43279 stoweidlem14 46136 stoweidlem57 46179 elaa2 46356 |
| Copyright terms: Public domain | W3C validator |