MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximi2 Structured version   Visualization version   GIF version

Theorem reximi2 3174
Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
Hypothesis
Ref Expression
reximi2.1 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
reximi2 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)

Proof of Theorem reximi2
StepHypRef Expression
1 reximi2.1 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
21eximi 1841 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3072 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3072 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43imtr4i 292 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1786  wcel 2110  wrex 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816
This theorem depends on definitions:  df-bi 206  df-ex 1787  df-rex 3072
This theorem is referenced by:  reximia  3175  pssnn  8933  pssnnOLD  9018  btwnz  12422  xrsupexmnf  13038  xrinfmexpnf  13039  xrsupsslem  13040  xrinfmsslem  13041  supxrun  13049  ioo0  13103  hashgt23el  14137  resqrex  14960  resqreu  14962  rexuzre  15062  neiptopnei  22281  comppfsc  22681  filssufilg  23060  alexsubALTlem4  23199  lgsquadlem2  26527  nmobndseqi  29137  nmobndseqiALT  29138  pjnmopi  30506  crefdf  31794  dya2iocuni  32246  ballotlemfc0  32455  ballotlemfcc  32456  ballotlemsup  32467  fnrelpredd  33057  poimirlem32  35805  sstotbnd3  35930  lsateln0  37005  pclcmpatN  37911  aaitgo  40984  stoweidlem14  43526  stoweidlem57  43569  elaa2  43746
  Copyright terms: Public domain W3C validator