Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > dmdbr6ati | Structured version Visualization version GIF version |
Description: Dual modular pair property in terms of atoms. The modular law takes the form of the shearing identity. (Contributed by NM, 18-Jan-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sumdmdi.1 | ⊢ 𝐴 ∈ Cℋ |
sumdmdi.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
dmdbr6ati | ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumdmdi.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
2 | sumdmdi.2 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
3 | dmdbr3 30667 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)))) | |
4 | 1, 2, 3 | mp2an 689 | . . . 4 ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵))) |
5 | chabs2 29879 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝑥 ∩ (𝑥 ∨ℋ 𝐵)) = 𝑥) | |
6 | 2, 5 | mpan2 688 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → (𝑥 ∩ (𝑥 ∨ℋ 𝐵)) = 𝑥) |
7 | 6 | ineq2d 4146 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → ((𝐴 ∨ℋ 𝐵) ∩ (𝑥 ∩ (𝑥 ∨ℋ 𝐵))) = ((𝐴 ∨ℋ 𝐵) ∩ 𝑥)) |
8 | incom 4135 | . . . . . . . . 9 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ (𝑥 ∩ (𝑥 ∨ℋ 𝐵))) = ((𝑥 ∩ (𝑥 ∨ℋ 𝐵)) ∩ (𝐴 ∨ℋ 𝐵)) | |
9 | inass 4153 | . . . . . . . . 9 ⊢ ((𝑥 ∩ (𝑥 ∨ℋ 𝐵)) ∩ (𝐴 ∨ℋ 𝐵)) = (𝑥 ∩ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵))) | |
10 | incom 4135 | . . . . . . . . 9 ⊢ (𝑥 ∩ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵))) = (((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝑥) | |
11 | 8, 9, 10 | 3eqtri 2770 | . . . . . . . 8 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ (𝑥 ∩ (𝑥 ∨ℋ 𝐵))) = (((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝑥) |
12 | 7, 11 | eqtr3di 2793 | . . . . . . 7 ⊢ (𝑥 ∈ Cℋ → ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = (((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝑥)) |
13 | 12 | adantr 481 | . . . . . 6 ⊢ ((𝑥 ∈ Cℋ ∧ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵))) → ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = (((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝑥)) |
14 | ineq1 4139 | . . . . . . 7 ⊢ ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) → ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥) = (((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝑥)) | |
15 | 14 | adantl 482 | . . . . . 6 ⊢ ((𝑥 ∈ Cℋ ∧ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵))) → ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥) = (((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝑥)) |
16 | 13, 15 | eqtr4d 2781 | . . . . 5 ⊢ ((𝑥 ∈ Cℋ ∧ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵))) → ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) |
17 | 16 | ralimiaa 3086 | . . . 4 ⊢ (∀𝑥 ∈ Cℋ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) → ∀𝑥 ∈ Cℋ ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) |
18 | 4, 17 | sylbi 216 | . . 3 ⊢ (𝐴 𝑀ℋ* 𝐵 → ∀𝑥 ∈ Cℋ ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) |
19 | atelch 30706 | . . . . 5 ⊢ (𝑥 ∈ HAtoms → 𝑥 ∈ Cℋ ) | |
20 | 19 | imim1i 63 | . . . 4 ⊢ ((𝑥 ∈ Cℋ → ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) → (𝑥 ∈ HAtoms → ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥))) |
21 | 20 | ralimi2 3084 | . . 3 ⊢ (∀𝑥 ∈ Cℋ ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥) → ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) |
22 | 18, 21 | syl 17 | . 2 ⊢ (𝐴 𝑀ℋ* 𝐵 → ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) |
23 | inss1 4162 | . . . . . 6 ⊢ ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) | |
24 | sseq1 3946 | . . . . . 6 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥) → (((𝐴 ∨ℋ 𝐵) ∩ 𝑥) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ↔ ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | |
25 | 23, 24 | mpbiri 257 | . . . . 5 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥) → ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) |
26 | incom 4135 | . . . . . . 7 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) | |
27 | df-ss 3904 | . . . . . . . 8 ⊢ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) = 𝑥) | |
28 | 27 | biimpi 215 | . . . . . . 7 ⊢ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) = 𝑥) |
29 | 26, 28 | eqtrid 2790 | . . . . . 6 ⊢ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = 𝑥) |
30 | 29 | sseq1d 3952 | . . . . 5 ⊢ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → (((𝐴 ∨ℋ 𝐵) ∩ 𝑥) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ↔ 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
31 | 25, 30 | syl5ibcom 244 | . . . 4 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥) → (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
32 | 31 | ralimi 3087 | . . 3 ⊢ (∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥) → ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
33 | 1, 2 | dmdbr5ati 30784 | . . 3 ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) |
34 | 32, 33 | sylibr 233 | . 2 ⊢ (∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥) → 𝐴 𝑀ℋ* 𝐵) |
35 | 22, 34 | impbii 208 | 1 ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 ⊆ wss 3887 class class class wbr 5074 (class class class)co 7275 Cℋ cch 29291 ∨ℋ chj 29295 HAtomscat 29327 𝑀ℋ* cdmd 29329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 ax-hilex 29361 ax-hfvadd 29362 ax-hvcom 29363 ax-hvass 29364 ax-hv0cl 29365 ax-hvaddid 29366 ax-hfvmul 29367 ax-hvmulid 29368 ax-hvmulass 29369 ax-hvdistr1 29370 ax-hvdistr2 29371 ax-hvmul0 29372 ax-hfi 29441 ax-his1 29444 ax-his2 29445 ax-his3 29446 ax-his4 29447 ax-hcompl 29564 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-cn 22378 df-cnp 22379 df-lm 22380 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cfil 24419 df-cau 24420 df-cmet 24421 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-ims 28963 df-dip 29063 df-ssp 29084 df-ph 29175 df-cbn 29225 df-hnorm 29330 df-hba 29331 df-hvsub 29333 df-hlim 29334 df-hcau 29335 df-sh 29569 df-ch 29583 df-oc 29614 df-ch0 29615 df-shs 29670 df-span 29671 df-chj 29672 df-chsup 29673 df-pjh 29757 df-cv 30641 df-md 30642 df-dmd 30643 df-at 30700 |
This theorem is referenced by: dmdbr7ati 30786 |
Copyright terms: Public domain | W3C validator |