![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcmptcl | Structured version Visualization version GIF version |
Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcmpt.1 | β’ πΉ = (π β β β¦ if(π β β, (πβπ΄), 1)) |
pcmpt.2 | β’ (π β βπ β β π΄ β β0) |
Ref | Expression |
---|---|
pcmptcl | β’ (π β (πΉ:ββΆβ β§ seq1( Β· , πΉ):ββΆβ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcmpt.2 | . . . 4 β’ (π β βπ β β π΄ β β0) | |
2 | pm2.27 42 | . . . . . . . 8 β’ (π β β β ((π β β β π΄ β β0) β π΄ β β0)) | |
3 | iftrue 4538 | . . . . . . . . . . 11 β’ (π β β β if(π β β, (πβπ΄), 1) = (πβπ΄)) | |
4 | 3 | adantr 479 | . . . . . . . . . 10 β’ ((π β β β§ π΄ β β0) β if(π β β, (πβπ΄), 1) = (πβπ΄)) |
5 | prmnn 16652 | . . . . . . . . . . 11 β’ (π β β β π β β) | |
6 | nnexpcl 14079 | . . . . . . . . . . 11 β’ ((π β β β§ π΄ β β0) β (πβπ΄) β β) | |
7 | 5, 6 | sylan 578 | . . . . . . . . . 10 β’ ((π β β β§ π΄ β β0) β (πβπ΄) β β) |
8 | 4, 7 | eqeltrd 2829 | . . . . . . . . 9 β’ ((π β β β§ π΄ β β0) β if(π β β, (πβπ΄), 1) β β) |
9 | 8 | ex 411 | . . . . . . . 8 β’ (π β β β (π΄ β β0 β if(π β β, (πβπ΄), 1) β β)) |
10 | 2, 9 | syld 47 | . . . . . . 7 β’ (π β β β ((π β β β π΄ β β0) β if(π β β, (πβπ΄), 1) β β)) |
11 | iffalse 4541 | . . . . . . . . 9 β’ (Β¬ π β β β if(π β β, (πβπ΄), 1) = 1) | |
12 | 1nn 12261 | . . . . . . . . 9 β’ 1 β β | |
13 | 11, 12 | eqeltrdi 2837 | . . . . . . . 8 β’ (Β¬ π β β β if(π β β, (πβπ΄), 1) β β) |
14 | 13 | a1d 25 | . . . . . . 7 β’ (Β¬ π β β β ((π β β β π΄ β β0) β if(π β β, (πβπ΄), 1) β β)) |
15 | 10, 14 | pm2.61i 182 | . . . . . 6 β’ ((π β β β π΄ β β0) β if(π β β, (πβπ΄), 1) β β) |
16 | 15 | a1d 25 | . . . . 5 β’ ((π β β β π΄ β β0) β (π β β β if(π β β, (πβπ΄), 1) β β)) |
17 | 16 | ralimi2 3075 | . . . 4 β’ (βπ β β π΄ β β0 β βπ β β if(π β β, (πβπ΄), 1) β β) |
18 | 1, 17 | syl 17 | . . 3 β’ (π β βπ β β if(π β β, (πβπ΄), 1) β β) |
19 | pcmpt.1 | . . . 4 β’ πΉ = (π β β β¦ if(π β β, (πβπ΄), 1)) | |
20 | 19 | fmpt 7125 | . . 3 β’ (βπ β β if(π β β, (πβπ΄), 1) β β β πΉ:ββΆβ) |
21 | 18, 20 | sylib 217 | . 2 β’ (π β πΉ:ββΆβ) |
22 | nnuz 12903 | . . 3 β’ β = (β€β₯β1) | |
23 | 1zzd 12631 | . . 3 β’ (π β 1 β β€) | |
24 | 21 | ffvelcdmda 7099 | . . 3 β’ ((π β§ π β β) β (πΉβπ) β β) |
25 | nnmulcl 12274 | . . . 4 β’ ((π β β β§ π β β) β (π Β· π) β β) | |
26 | 25 | adantl 480 | . . 3 β’ ((π β§ (π β β β§ π β β)) β (π Β· π) β β) |
27 | 22, 23, 24, 26 | seqf 14028 | . 2 β’ (π β seq1( Β· , πΉ):ββΆβ) |
28 | 21, 27 | jca 510 | 1 β’ (π β (πΉ:ββΆβ β§ seq1( Β· , πΉ):ββΆβ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3058 ifcif 4532 β¦ cmpt 5235 βΆwf 6549 (class class class)co 7426 1c1 11147 Β· cmul 11151 βcn 12250 β0cn0 12510 seqcseq 14006 βcexp 14066 βcprime 16649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-seq 14007 df-exp 14067 df-prm 16650 |
This theorem is referenced by: pcmpt 16868 pcmpt2 16869 pcmptdvds 16870 pcprod 16871 1arithlem4 16902 bposlem3 27239 bposlem5 27241 bposlem6 27242 |
Copyright terms: Public domain | W3C validator |