| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcmptcl | Structured version Visualization version GIF version | ||
| Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| Ref | Expression |
|---|---|
| pcmpt.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) |
| pcmpt.2 | ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| pcmptcl | ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcmpt.2 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) | |
| 2 | pm2.27 42 | . . . . . . . 8 ⊢ (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)) | |
| 3 | iftrue 4494 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = (𝑛↑𝐴)) | |
| 4 | 3 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = (𝑛↑𝐴)) |
| 5 | prmnn 16644 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℕ) | |
| 6 | nnexpcl 14039 | . . . . . . . . . . 11 ⊢ ((𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑛↑𝐴) ∈ ℕ) | |
| 7 | 5, 6 | sylan 580 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑛↑𝐴) ∈ ℕ) |
| 8 | 4, 7 | eqeltrd 2828 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
| 9 | 8 | ex 412 | . . . . . . . 8 ⊢ (𝑛 ∈ ℙ → (𝐴 ∈ ℕ0 → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
| 10 | 2, 9 | syld 47 | . . . . . . 7 ⊢ (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
| 11 | iffalse 4497 | . . . . . . . . 9 ⊢ (¬ 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = 1) | |
| 12 | 1nn 12197 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 13 | 11, 12 | eqeltrdi 2836 | . . . . . . . 8 ⊢ (¬ 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
| 14 | 13 | a1d 25 | . . . . . . 7 ⊢ (¬ 𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
| 15 | 10, 14 | pm2.61i 182 | . . . . . 6 ⊢ ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
| 16 | 15 | a1d 25 | . . . . 5 ⊢ ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
| 17 | 16 | ralimi2 3061 | . . . 4 ⊢ (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
| 18 | 1, 17 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
| 19 | pcmpt.1 | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) | |
| 20 | 19 | fmpt 7082 | . . 3 ⊢ (∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ ↔ 𝐹:ℕ⟶ℕ) |
| 21 | 18, 20 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶ℕ) |
| 22 | nnuz 12836 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 23 | 1zzd 12564 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 24 | 21 | ffvelcdmda 7056 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℕ) |
| 25 | nnmulcl 12210 | . . . 4 ⊢ ((𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑘 · 𝑝) ∈ ℕ) | |
| 26 | 25 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑘 · 𝑝) ∈ ℕ) |
| 27 | 22, 23, 24, 26 | seqf 13988 | . 2 ⊢ (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ) |
| 28 | 21, 27 | jca 511 | 1 ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ifcif 4488 ↦ cmpt 5188 ⟶wf 6507 (class class class)co 7387 1c1 11069 · cmul 11073 ℕcn 12186 ℕ0cn0 12442 seqcseq 13966 ↑cexp 14026 ℙcprime 16641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-exp 14027 df-prm 16642 |
| This theorem is referenced by: pcmpt 16863 pcmpt2 16864 pcmptdvds 16865 pcprod 16866 1arithlem4 16897 bposlem3 27197 bposlem5 27199 bposlem6 27200 |
| Copyright terms: Public domain | W3C validator |