| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcmptcl | Structured version Visualization version GIF version | ||
| Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| Ref | Expression |
|---|---|
| pcmpt.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) |
| pcmpt.2 | ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| pcmptcl | ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcmpt.2 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) | |
| 2 | pm2.27 42 | . . . . . . . 8 ⊢ (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)) | |
| 3 | iftrue 4531 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = (𝑛↑𝐴)) | |
| 4 | 3 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = (𝑛↑𝐴)) |
| 5 | prmnn 16711 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℕ) | |
| 6 | nnexpcl 14115 | . . . . . . . . . . 11 ⊢ ((𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑛↑𝐴) ∈ ℕ) | |
| 7 | 5, 6 | sylan 580 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑛↑𝐴) ∈ ℕ) |
| 8 | 4, 7 | eqeltrd 2841 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
| 9 | 8 | ex 412 | . . . . . . . 8 ⊢ (𝑛 ∈ ℙ → (𝐴 ∈ ℕ0 → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
| 10 | 2, 9 | syld 47 | . . . . . . 7 ⊢ (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
| 11 | iffalse 4534 | . . . . . . . . 9 ⊢ (¬ 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = 1) | |
| 12 | 1nn 12277 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 13 | 11, 12 | eqeltrdi 2849 | . . . . . . . 8 ⊢ (¬ 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
| 14 | 13 | a1d 25 | . . . . . . 7 ⊢ (¬ 𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
| 15 | 10, 14 | pm2.61i 182 | . . . . . 6 ⊢ ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
| 16 | 15 | a1d 25 | . . . . 5 ⊢ ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
| 17 | 16 | ralimi2 3078 | . . . 4 ⊢ (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
| 18 | 1, 17 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
| 19 | pcmpt.1 | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) | |
| 20 | 19 | fmpt 7130 | . . 3 ⊢ (∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ ↔ 𝐹:ℕ⟶ℕ) |
| 21 | 18, 20 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶ℕ) |
| 22 | nnuz 12921 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 23 | 1zzd 12648 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 24 | 21 | ffvelcdmda 7104 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℕ) |
| 25 | nnmulcl 12290 | . . . 4 ⊢ ((𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑘 · 𝑝) ∈ ℕ) | |
| 26 | 25 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑘 · 𝑝) ∈ ℕ) |
| 27 | 22, 23, 24, 26 | seqf 14064 | . 2 ⊢ (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ) |
| 28 | 21, 27 | jca 511 | 1 ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ifcif 4525 ↦ cmpt 5225 ⟶wf 6557 (class class class)co 7431 1c1 11156 · cmul 11160 ℕcn 12266 ℕ0cn0 12526 seqcseq 14042 ↑cexp 14102 ℙcprime 16708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-seq 14043 df-exp 14103 df-prm 16709 |
| This theorem is referenced by: pcmpt 16930 pcmpt2 16931 pcmptdvds 16932 pcprod 16933 1arithlem4 16964 bposlem3 27330 bposlem5 27332 bposlem6 27333 |
| Copyright terms: Public domain | W3C validator |