Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcmptcl | Structured version Visualization version GIF version |
Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcmpt.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) |
pcmpt.2 | ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
pcmptcl | ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcmpt.2 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) | |
2 | pm2.27 42 | . . . . . . . 8 ⊢ (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)) | |
3 | iftrue 4462 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = (𝑛↑𝐴)) | |
4 | 3 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = (𝑛↑𝐴)) |
5 | prmnn 16307 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℕ) | |
6 | nnexpcl 13723 | . . . . . . . . . . 11 ⊢ ((𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑛↑𝐴) ∈ ℕ) | |
7 | 5, 6 | sylan 579 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑛↑𝐴) ∈ ℕ) |
8 | 4, 7 | eqeltrd 2839 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
9 | 8 | ex 412 | . . . . . . . 8 ⊢ (𝑛 ∈ ℙ → (𝐴 ∈ ℕ0 → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
10 | 2, 9 | syld 47 | . . . . . . 7 ⊢ (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
11 | iffalse 4465 | . . . . . . . . 9 ⊢ (¬ 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = 1) | |
12 | 1nn 11914 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
13 | 11, 12 | eqeltrdi 2847 | . . . . . . . 8 ⊢ (¬ 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
14 | 13 | a1d 25 | . . . . . . 7 ⊢ (¬ 𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
15 | 10, 14 | pm2.61i 182 | . . . . . 6 ⊢ ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
16 | 15 | a1d 25 | . . . . 5 ⊢ ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
17 | 16 | ralimi2 3083 | . . . 4 ⊢ (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
18 | 1, 17 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
19 | pcmpt.1 | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) | |
20 | 19 | fmpt 6966 | . . 3 ⊢ (∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ ↔ 𝐹:ℕ⟶ℕ) |
21 | 18, 20 | sylib 217 | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶ℕ) |
22 | nnuz 12550 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
23 | 1zzd 12281 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
24 | 21 | ffvelrnda 6943 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℕ) |
25 | nnmulcl 11927 | . . . 4 ⊢ ((𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑘 · 𝑝) ∈ ℕ) | |
26 | 25 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑘 · 𝑝) ∈ ℕ) |
27 | 22, 23, 24, 26 | seqf 13672 | . 2 ⊢ (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ) |
28 | 21, 27 | jca 511 | 1 ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ifcif 4456 ↦ cmpt 5153 ⟶wf 6414 (class class class)co 7255 1c1 10803 · cmul 10807 ℕcn 11903 ℕ0cn0 12163 seqcseq 13649 ↑cexp 13710 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 df-exp 13711 df-prm 16305 |
This theorem is referenced by: pcmpt 16521 pcmpt2 16522 pcmptdvds 16523 pcprod 16524 1arithlem4 16555 bposlem3 26339 bposlem5 26341 bposlem6 26342 |
Copyright terms: Public domain | W3C validator |