MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmptcl Structured version   Visualization version   GIF version

Theorem pcmptcl 16911
Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
Assertion
Ref Expression
pcmptcl (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))

Proof of Theorem pcmptcl
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . 4 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
2 pm2.27 42 . . . . . . . 8 (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0))
3 iftrue 4506 . . . . . . . . . . 11 (𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = (𝑛𝐴))
43adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = (𝑛𝐴))
5 prmnn 16693 . . . . . . . . . . 11 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
6 nnexpcl 14092 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑛𝐴) ∈ ℕ)
75, 6sylan 580 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑛𝐴) ∈ ℕ)
84, 7eqeltrd 2834 . . . . . . . . 9 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
98ex 412 . . . . . . . 8 (𝑛 ∈ ℙ → (𝐴 ∈ ℕ0 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
102, 9syld 47 . . . . . . 7 (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
11 iffalse 4509 . . . . . . . . 9 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = 1)
12 1nn 12251 . . . . . . . . 9 1 ∈ ℕ
1311, 12eqeltrdi 2842 . . . . . . . 8 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
1413a1d 25 . . . . . . 7 𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
1510, 14pm2.61i 182 . . . . . 6 ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
1615a1d 25 . . . . 5 ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
1716ralimi2 3068 . . . 4 (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
181, 17syl 17 . . 3 (𝜑 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
19 pcmpt.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
2019fmpt 7100 . . 3 (∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ ↔ 𝐹:ℕ⟶ℕ)
2118, 20sylib 218 . 2 (𝜑𝐹:ℕ⟶ℕ)
22 nnuz 12895 . . 3 ℕ = (ℤ‘1)
23 1zzd 12623 . . 3 (𝜑 → 1 ∈ ℤ)
2421ffvelcdmda 7074 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℕ)
25 nnmulcl 12264 . . . 4 ((𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑘 · 𝑝) ∈ ℕ)
2625adantl 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑘 · 𝑝) ∈ ℕ)
2722, 23, 24, 26seqf 14041 . 2 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
2821, 27jca 511 1 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  ifcif 4500  cmpt 5201  wf 6527  (class class class)co 7405  1c1 11130   · cmul 11134  cn 12240  0cn0 12501  seqcseq 14019  cexp 14079  cprime 16690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020  df-exp 14080  df-prm 16691
This theorem is referenced by:  pcmpt  16912  pcmpt2  16913  pcmptdvds  16914  pcprod  16915  1arithlem4  16946  bposlem3  27249  bposlem5  27251  bposlem6  27252
  Copyright terms: Public domain W3C validator