MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeq2 Structured version   Visualization version   GIF version

Theorem itgeq2 25294
Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itgeq2 (โˆ€๐‘ฅ โˆˆ ๐ด ๐ต = ๐ถ โ†’ โˆซ๐ด๐ต d๐‘ฅ = โˆซ๐ด๐ถ d๐‘ฅ)

Proof of Theorem itgeq2
Dummy variable ๐‘˜ is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . . 6 โ„ = โ„
2 simpl 483 . . . . . . . . . . . 12 ((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))) โ†’ ๐‘ฅ โˆˆ ๐ด)
32con3i 154 . . . . . . . . . . 11 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ ยฌ (๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))))
43iffalsed 4539 . . . . . . . . . 10 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0) = 0)
5 simpl 483 . . . . . . . . . . . 12 ((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))) โ†’ ๐‘ฅ โˆˆ ๐ด)
65con3i 154 . . . . . . . . . . 11 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ ยฌ (๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))))
76iffalsed 4539 . . . . . . . . . 10 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) = 0)
84, 7eqtr4d 2775 . . . . . . . . 9 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0) = if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))
9 fvoveq1 7431 . . . . . . . . . . . 12 (๐ต = ๐ถ โ†’ (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))))
109breq2d 5160 . . . . . . . . . . 11 (๐ต = ๐ถ โ†’ (0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))) โ†” 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))))
1110anbi2d 629 . . . . . . . . . 10 (๐ต = ๐ถ โ†’ ((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))) โ†” (๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))))))
1211, 9ifbieq1d 4552 . . . . . . . . 9 (๐ต = ๐ถ โ†’ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0) = if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))
138, 12ja 186 . . . . . . . 8 ((๐‘ฅ โˆˆ ๐ด โ†’ ๐ต = ๐ถ) โ†’ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0) = if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))
1413a1d 25 . . . . . . 7 ((๐‘ฅ โˆˆ ๐ด โ†’ ๐ต = ๐ถ) โ†’ (๐‘ฅ โˆˆ โ„ โ†’ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0) = if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)))
1514ralimi2 3078 . . . . . 6 (โˆ€๐‘ฅ โˆˆ ๐ด ๐ต = ๐ถ โ†’ โˆ€๐‘ฅ โˆˆ โ„ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0) = if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))
16 mpteq12 5240 . . . . . 6 ((โ„ = โ„ โˆง โˆ€๐‘ฅ โˆˆ โ„ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0) = if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)) โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)))
171, 15, 16sylancr 587 . . . . 5 (โˆ€๐‘ฅ โˆˆ ๐ด ๐ต = ๐ถ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)))
1817fveq2d 6895 . . . 4 (โˆ€๐‘ฅ โˆˆ ๐ด ๐ต = ๐ถ โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0))) = (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))))
1918oveq2d 7424 . . 3 (โˆ€๐‘ฅ โˆˆ ๐ด ๐ต = ๐ถ โ†’ ((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0)))) = ((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)))))
2019sumeq2sdv 15649 . 2 (โˆ€๐‘ฅ โˆˆ ๐ด ๐ต = ๐ถ โ†’ ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0)))) = ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)))))
21 eqid 2732 . . 3 (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))
2221dfitg 25286 . 2 โˆซ๐ด๐ต d๐‘ฅ = ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0))))
23 eqid 2732 . . 3 (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))
2423dfitg 25286 . 2 โˆซ๐ด๐ถ d๐‘ฅ = ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))))
2520, 22, 243eqtr4g 2797 1 (โˆ€๐‘ฅ โˆˆ ๐ด ๐ต = ๐ถ โ†’ โˆซ๐ด๐ต d๐‘ฅ = โˆซ๐ด๐ถ d๐‘ฅ)
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 396   = wceq 1541   โˆˆ wcel 2106  โˆ€wral 3061  ifcif 4528   class class class wbr 5148   โ†ฆ cmpt 5231  โ€˜cfv 6543  (class class class)co 7408  โ„cr 11108  0cc0 11109  ici 11111   ยท cmul 11114   โ‰ค cle 11248   / cdiv 11870  3c3 12267  ...cfz 13483  โ†‘cexp 14026  โ„œcre 15043  ฮฃcsu 15631  โˆซ2citg2 25132  โˆซcitg 25134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-seq 13966  df-sum 15632  df-itg 25139
This theorem is referenced by:  itgeq2dv  25298  itgfsum  25343  ditgeq3  25366  itgpowd  25566  ftc2re  33605  itgexpif  33613  lcmineqlem12  40900  arearect  41954  areaquad  41955  lhe4.4ex1a  43078
  Copyright terms: Public domain W3C validator