MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeq2 Structured version   Visualization version   GIF version

Theorem itgeq2 25709
Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itgeq2 (∀𝑥𝐴 𝐵 = 𝐶 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥)

Proof of Theorem itgeq2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . 6 ℝ = ℝ
2 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) → 𝑥𝐴)
32con3i 154 . . . . . . . . . . 11 𝑥𝐴 → ¬ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))))
43iffalsed 4487 . . . . . . . . . 10 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = 0)
5 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 𝑥𝐴)
65con3i 154 . . . . . . . . . . 11 𝑥𝐴 → ¬ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))))
76iffalsed 4487 . . . . . . . . . 10 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
84, 7eqtr4d 2771 . . . . . . . . 9 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
9 fvoveq1 7377 . . . . . . . . . . . 12 (𝐵 = 𝐶 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
109breq2d 5107 . . . . . . . . . . 11 (𝐵 = 𝐶 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))))
1110anbi2d 630 . . . . . . . . . 10 (𝐵 = 𝐶 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))))
1211, 9ifbieq1d 4501 . . . . . . . . 9 (𝐵 = 𝐶 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
138, 12ja 186 . . . . . . . 8 ((𝑥𝐴𝐵 = 𝐶) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
1413a1d 25 . . . . . . 7 ((𝑥𝐴𝐵 = 𝐶) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
1514ralimi2 3065 . . . . . 6 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
16 mpteq12 5183 . . . . . 6 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
171, 15, 16sylancr 587 . . . . 5 (∀𝑥𝐴 𝐵 = 𝐶 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
1817fveq2d 6834 . . . 4 (∀𝑥𝐴 𝐵 = 𝐶 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
1918oveq2d 7370 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
2019sumeq2sdv 15614 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
21 eqid 2733 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
2221dfitg 25700 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
23 eqid 2733 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
2423dfitg 25700 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
2520, 22, 243eqtr4g 2793 1 (∀𝑥𝐴 𝐵 = 𝐶 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  ifcif 4476   class class class wbr 5095  cmpt 5176  cfv 6488  (class class class)co 7354  cr 11014  0cc0 11015  ici 11017   · cmul 11020  cle 11156   / cdiv 11783  3c3 12190  ...cfz 13411  cexp 13972  cre 15008  Σcsu 15597  2citg2 25547  citg 25549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-seq 13913  df-sum 15598  df-itg 25554
This theorem is referenced by:  itgeq2dv  25713  itgfsum  25758  ditgeq3  25781  itgpowd  25987  ftc2re  34634  itgexpif  34642  lcmineqlem12  42156  arearect  43335  areaquad  43336  lhe4.4ex1a  44449
  Copyright terms: Public domain W3C validator