MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppssov1 Structured version   Visualization version   GIF version

Theorem fsuppssov1 9453
Description: Formula building theorem for finite support: operator with left annihilator. Finite support version of suppssov1 8238. (Contributed by SN, 26-Apr-2025.)
Hypotheses
Ref Expression
fsuppssov1.s (𝜑 → (𝑥𝐷𝐴) finSupp 𝑌)
fsuppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
fsuppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
fsuppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
fsuppssov1.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppssov1 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑣)   𝑅(𝑥)   𝑂(𝑥)   𝑉(𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem fsuppssov1
StepHypRef Expression
1 fsuppssov1.s . . . . 5 (𝜑 → (𝑥𝐷𝐴) finSupp 𝑌)
2 relfsupp 9433 . . . . . 6 Rel finSupp
32brrelex1i 5756 . . . . 5 ((𝑥𝐷𝐴) finSupp 𝑌 → (𝑥𝐷𝐴) ∈ V)
41, 3syl 17 . . . 4 (𝜑 → (𝑥𝐷𝐴) ∈ V)
5 fsuppssov1.a . . . . 5 ((𝜑𝑥𝐷) → 𝐴𝑉)
65fmpttd 7149 . . . 4 (𝜑 → (𝑥𝐷𝐴):𝐷𝑉)
7 dmfex 7945 . . . 4 (((𝑥𝐷𝐴) ∈ V ∧ (𝑥𝐷𝐴):𝐷𝑉) → 𝐷 ∈ V)
84, 6, 7syl2anc 583 . . 3 (𝜑𝐷 ∈ V)
98mptexd 7261 . 2 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
10 fsuppssov1.z . 2 (𝜑𝑍𝑊)
11 funmpt 6616 . . 3 Fun (𝑥𝐷 ↦ (𝐴𝑂𝐵))
1211a1i 11 . 2 (𝜑 → Fun (𝑥𝐷 ↦ (𝐴𝑂𝐵)))
13 ssidd 4032 . . 3 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
14 fsuppssov1.o . . 3 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
15 fsuppssov1.b . . 3 ((𝜑𝑥𝐷) → 𝐵𝑅)
162brrelex2i 5757 . . . 4 ((𝑥𝐷𝐴) finSupp 𝑌𝑌 ∈ V)
171, 16syl 17 . . 3 (𝜑𝑌 ∈ V)
1813, 14, 5, 15, 17suppssov1 8238 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
199, 10, 12, 1, 18fsuppsssuppgd 9451 1 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166  cmpt 5249  Fun wfun 6567  wf 6569  (class class class)co 7448   supp csupp 8201   finSupp cfsupp 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-supp 8202  df-1o 8522  df-en 9004  df-fin 9007  df-fsupp 9432
This theorem is referenced by:  selvvvval  42540  evlselv  42542
  Copyright terms: Public domain W3C validator