MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppssov1 Structured version   Visualization version   GIF version

Theorem fsuppssov1 9275
Description: Formula building theorem for finite support: operator with left annihilator. Finite support version of suppssov1 8133. (Contributed by SN, 26-Apr-2025.)
Hypotheses
Ref Expression
fsuppssov1.s (𝜑 → (𝑥𝐷𝐴) finSupp 𝑌)
fsuppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
fsuppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
fsuppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
fsuppssov1.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppssov1 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑣)   𝑅(𝑥)   𝑂(𝑥)   𝑉(𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem fsuppssov1
StepHypRef Expression
1 fsuppssov1.s . . . . 5 (𝜑 → (𝑥𝐷𝐴) finSupp 𝑌)
2 relfsupp 9254 . . . . . 6 Rel finSupp
32brrelex1i 5675 . . . . 5 ((𝑥𝐷𝐴) finSupp 𝑌 → (𝑥𝐷𝐴) ∈ V)
41, 3syl 17 . . . 4 (𝜑 → (𝑥𝐷𝐴) ∈ V)
5 fsuppssov1.a . . . . 5 ((𝜑𝑥𝐷) → 𝐴𝑉)
65fmpttd 7054 . . . 4 (𝜑 → (𝑥𝐷𝐴):𝐷𝑉)
7 dmfex 7841 . . . 4 (((𝑥𝐷𝐴) ∈ V ∧ (𝑥𝐷𝐴):𝐷𝑉) → 𝐷 ∈ V)
84, 6, 7syl2anc 584 . . 3 (𝜑𝐷 ∈ V)
98mptexd 7164 . 2 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
10 fsuppssov1.z . 2 (𝜑𝑍𝑊)
11 funmpt 6524 . . 3 Fun (𝑥𝐷 ↦ (𝐴𝑂𝐵))
1211a1i 11 . 2 (𝜑 → Fun (𝑥𝐷 ↦ (𝐴𝑂𝐵)))
13 ssidd 3954 . . 3 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
14 fsuppssov1.o . . 3 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
15 fsuppssov1.b . . 3 ((𝜑𝑥𝐷) → 𝐵𝑅)
162brrelex2i 5676 . . . 4 ((𝑥𝐷𝐴) finSupp 𝑌𝑌 ∈ V)
171, 16syl 17 . . 3 (𝜑𝑌 ∈ V)
1813, 14, 5, 15, 17suppssov1 8133 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
199, 10, 12, 1, 18fsuppsssuppgd 9273 1 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437   class class class wbr 5093  cmpt 5174  Fun wfun 6480  wf 6482  (class class class)co 7352   supp csupp 8096   finSupp cfsupp 9252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-supp 8097  df-1o 8391  df-en 8876  df-fin 8879  df-fsupp 9253
This theorem is referenced by:  elrgspn  33220  elrgspnsubrunlem2  33222  mplvrpmrhm  33595  selvvvval  42703  evlselv  42705
  Copyright terms: Public domain W3C validator