MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppssov1 Structured version   Visualization version   GIF version

Theorem fsuppssov1 9409
Description: Formula building theorem for finite support: operator with left annihilator. Finite support version of suppssov1 8203. (Contributed by SN, 26-Apr-2025.)
Hypotheses
Ref Expression
fsuppssov1.s (𝜑 → (𝑥𝐷𝐴) finSupp 𝑌)
fsuppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
fsuppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
fsuppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
fsuppssov1.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppssov1 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑣)   𝑅(𝑥)   𝑂(𝑥)   𝑉(𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem fsuppssov1
StepHypRef Expression
1 fsuppssov1.s . . . . 5 (𝜑 → (𝑥𝐷𝐴) finSupp 𝑌)
2 relfsupp 9389 . . . . . 6 Rel finSupp
32brrelex1i 5734 . . . . 5 ((𝑥𝐷𝐴) finSupp 𝑌 → (𝑥𝐷𝐴) ∈ V)
41, 3syl 17 . . . 4 (𝜑 → (𝑥𝐷𝐴) ∈ V)
5 fsuppssov1.a . . . . 5 ((𝜑𝑥𝐷) → 𝐴𝑉)
65fmpttd 7124 . . . 4 (𝜑 → (𝑥𝐷𝐴):𝐷𝑉)
7 dmfex 7913 . . . 4 (((𝑥𝐷𝐴) ∈ V ∧ (𝑥𝐷𝐴):𝐷𝑉) → 𝐷 ∈ V)
84, 6, 7syl2anc 582 . . 3 (𝜑𝐷 ∈ V)
98mptexd 7236 . 2 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
10 fsuppssov1.z . 2 (𝜑𝑍𝑊)
11 funmpt 6592 . . 3 Fun (𝑥𝐷 ↦ (𝐴𝑂𝐵))
1211a1i 11 . 2 (𝜑 → Fun (𝑥𝐷 ↦ (𝐴𝑂𝐵)))
13 ssidd 4000 . . 3 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
14 fsuppssov1.o . . 3 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
15 fsuppssov1.b . . 3 ((𝜑𝑥𝐷) → 𝐵𝑅)
162brrelex2i 5735 . . . 4 ((𝑥𝐷𝐴) finSupp 𝑌𝑌 ∈ V)
171, 16syl 17 . . 3 (𝜑𝑌 ∈ V)
1813, 14, 5, 15, 17suppssov1 8203 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
199, 10, 12, 1, 18fsuppsssuppgd 9407 1 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461   class class class wbr 5149  cmpt 5232  Fun wfun 6543  wf 6545  (class class class)co 7419   supp csupp 8165   finSupp cfsupp 9387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-supp 8166  df-1o 8487  df-en 8965  df-fin 8968  df-fsupp 9388
This theorem is referenced by:  selvvvval  41953  evlselv  41955
  Copyright terms: Public domain W3C validator