MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppssov1 Structured version   Visualization version   GIF version

Theorem fsuppssov1 9341
Description: Formula building theorem for finite support: operator with left annihilator. Finite support version of suppssov1 8178. (Contributed by SN, 26-Apr-2025.)
Hypotheses
Ref Expression
fsuppssov1.s (𝜑 → (𝑥𝐷𝐴) finSupp 𝑌)
fsuppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
fsuppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
fsuppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
fsuppssov1.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppssov1 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑣)   𝑅(𝑥)   𝑂(𝑥)   𝑉(𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem fsuppssov1
StepHypRef Expression
1 fsuppssov1.s . . . . 5 (𝜑 → (𝑥𝐷𝐴) finSupp 𝑌)
2 relfsupp 9320 . . . . . 6 Rel finSupp
32brrelex1i 5696 . . . . 5 ((𝑥𝐷𝐴) finSupp 𝑌 → (𝑥𝐷𝐴) ∈ V)
41, 3syl 17 . . . 4 (𝜑 → (𝑥𝐷𝐴) ∈ V)
5 fsuppssov1.a . . . . 5 ((𝜑𝑥𝐷) → 𝐴𝑉)
65fmpttd 7089 . . . 4 (𝜑 → (𝑥𝐷𝐴):𝐷𝑉)
7 dmfex 7883 . . . 4 (((𝑥𝐷𝐴) ∈ V ∧ (𝑥𝐷𝐴):𝐷𝑉) → 𝐷 ∈ V)
84, 6, 7syl2anc 584 . . 3 (𝜑𝐷 ∈ V)
98mptexd 7200 . 2 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
10 fsuppssov1.z . 2 (𝜑𝑍𝑊)
11 funmpt 6556 . . 3 Fun (𝑥𝐷 ↦ (𝐴𝑂𝐵))
1211a1i 11 . 2 (𝜑 → Fun (𝑥𝐷 ↦ (𝐴𝑂𝐵)))
13 ssidd 3972 . . 3 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
14 fsuppssov1.o . . 3 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
15 fsuppssov1.b . . 3 ((𝜑𝑥𝐷) → 𝐵𝑅)
162brrelex2i 5697 . . . 4 ((𝑥𝐷𝐴) finSupp 𝑌𝑌 ∈ V)
171, 16syl 17 . . 3 (𝜑𝑌 ∈ V)
1813, 14, 5, 15, 17suppssov1 8178 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
199, 10, 12, 1, 18fsuppsssuppgd 9339 1 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5109  cmpt 5190  Fun wfun 6507  wf 6509  (class class class)co 7389   supp csupp 8141   finSupp cfsupp 9318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-supp 8142  df-1o 8436  df-en 8921  df-fin 8924  df-fsupp 9319
This theorem is referenced by:  elrgspn  33203  elrgspnsubrunlem2  33205  selvvvval  42566  evlselv  42568
  Copyright terms: Public domain W3C validator