| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppssov1 | Structured version Visualization version GIF version | ||
| Description: Formula building theorem for finite support: operator with left annihilator. Finite support version of suppssov1 8178. (Contributed by SN, 26-Apr-2025.) |
| Ref | Expression |
|---|---|
| fsuppssov1.s | ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ 𝐴) finSupp 𝑌) |
| fsuppssov1.o | ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) |
| fsuppssov1.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) |
| fsuppssov1.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) |
| fsuppssov1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fsuppssov1 | ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppssov1.s | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ 𝐴) finSupp 𝑌) | |
| 2 | relfsupp 9320 | . . . . . 6 ⊢ Rel finSupp | |
| 3 | 2 | brrelex1i 5696 | . . . . 5 ⊢ ((𝑥 ∈ 𝐷 ↦ 𝐴) finSupp 𝑌 → (𝑥 ∈ 𝐷 ↦ 𝐴) ∈ V) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ 𝐴) ∈ V) |
| 5 | fsuppssov1.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) | |
| 6 | 5 | fmpttd 7089 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ 𝐴):𝐷⟶𝑉) |
| 7 | dmfex 7883 | . . . 4 ⊢ (((𝑥 ∈ 𝐷 ↦ 𝐴) ∈ V ∧ (𝑥 ∈ 𝐷 ↦ 𝐴):𝐷⟶𝑉) → 𝐷 ∈ V) | |
| 8 | 4, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 9 | 8 | mptexd 7200 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V) |
| 10 | fsuppssov1.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 11 | funmpt 6556 | . . 3 ⊢ Fun (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → Fun (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵))) |
| 13 | ssidd 3972 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌)) | |
| 14 | fsuppssov1.o | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) | |
| 15 | fsuppssov1.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) | |
| 16 | 2 | brrelex2i 5697 | . . . 4 ⊢ ((𝑥 ∈ 𝐷 ↦ 𝐴) finSupp 𝑌 → 𝑌 ∈ V) |
| 17 | 1, 16 | syl 17 | . . 3 ⊢ (𝜑 → 𝑌 ∈ V) |
| 18 | 13, 14, 5, 15, 17 | suppssov1 8178 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌)) |
| 19 | 9, 10, 12, 1, 18 | fsuppsssuppgd 9339 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5109 ↦ cmpt 5190 Fun wfun 6507 ⟶wf 6509 (class class class)co 7389 supp csupp 8141 finSupp cfsupp 9318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-supp 8142 df-1o 8436 df-en 8921 df-fin 8924 df-fsupp 9319 |
| This theorem is referenced by: elrgspn 33203 elrgspnsubrunlem2 33205 selvvvval 42566 evlselv 42568 |
| Copyright terms: Public domain | W3C validator |