MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppssov1 Structured version   Visualization version   GIF version

Theorem fsuppssov1 9335
Description: Formula building theorem for finite support: operator with left annihilator. Finite support version of suppssov1 8176. (Contributed by SN, 26-Apr-2025.)
Hypotheses
Ref Expression
fsuppssov1.s (𝜑 → (𝑥𝐷𝐴) finSupp 𝑌)
fsuppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
fsuppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
fsuppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
fsuppssov1.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppssov1 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑣)   𝑅(𝑥)   𝑂(𝑥)   𝑉(𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem fsuppssov1
StepHypRef Expression
1 fsuppssov1.s . . . . 5 (𝜑 → (𝑥𝐷𝐴) finSupp 𝑌)
2 relfsupp 9314 . . . . . 6 Rel finSupp
32brrelex1i 5694 . . . . 5 ((𝑥𝐷𝐴) finSupp 𝑌 → (𝑥𝐷𝐴) ∈ V)
41, 3syl 17 . . . 4 (𝜑 → (𝑥𝐷𝐴) ∈ V)
5 fsuppssov1.a . . . . 5 ((𝜑𝑥𝐷) → 𝐴𝑉)
65fmpttd 7087 . . . 4 (𝜑 → (𝑥𝐷𝐴):𝐷𝑉)
7 dmfex 7881 . . . 4 (((𝑥𝐷𝐴) ∈ V ∧ (𝑥𝐷𝐴):𝐷𝑉) → 𝐷 ∈ V)
84, 6, 7syl2anc 584 . . 3 (𝜑𝐷 ∈ V)
98mptexd 7198 . 2 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
10 fsuppssov1.z . 2 (𝜑𝑍𝑊)
11 funmpt 6554 . . 3 Fun (𝑥𝐷 ↦ (𝐴𝑂𝐵))
1211a1i 11 . 2 (𝜑 → Fun (𝑥𝐷 ↦ (𝐴𝑂𝐵)))
13 ssidd 3970 . . 3 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
14 fsuppssov1.o . . 3 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
15 fsuppssov1.b . . 3 ((𝜑𝑥𝐷) → 𝐵𝑅)
162brrelex2i 5695 . . . 4 ((𝑥𝐷𝐴) finSupp 𝑌𝑌 ∈ V)
171, 16syl 17 . . 3 (𝜑𝑌 ∈ V)
1813, 14, 5, 15, 17suppssov1 8176 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
199, 10, 12, 1, 18fsuppsssuppgd 9333 1 (𝜑 → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107  cmpt 5188  Fun wfun 6505  wf 6507  (class class class)co 7387   supp csupp 8139   finSupp cfsupp 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-supp 8140  df-1o 8434  df-en 8919  df-fin 8922  df-fsupp 9313
This theorem is referenced by:  elrgspn  33197  elrgspnsubrunlem2  33199  selvvvval  42573  evlselv  42575
  Copyright terms: Public domain W3C validator