MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppunbi Structured version   Visualization version   GIF version

Theorem fsuppunbi 9427
Description: If the union of two classes/functions is a function, this union is finitely supported iff the two functions are finitely supported. (Contributed by AV, 18-Jun-2019.)
Hypothesis
Ref Expression
fsuppunbi.u (𝜑 → Fun (𝐹𝐺))
Assertion
Ref Expression
fsuppunbi (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))

Proof of Theorem fsuppunbi
StepHypRef Expression
1 relfsupp 9401 . . . . 5 Rel finSupp
21brrelex12i 5744 . . . 4 ((𝐹𝐺) finSupp 𝑍 → ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
3 unexb 7766 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) ↔ (𝐹𝐺) ∈ V)
4 simpr 484 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
54adantr 480 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
6 simprlr 780 . . . . . . . . . . . 12 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐺 ∈ V)
76suppun 8208 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))
85, 7ssfid 9299 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 supp 𝑍) ∈ Fin)
9 fununfun 6616 . . . . . . . . . . . . . 14 (Fun (𝐹𝐺) → (Fun 𝐹 ∧ Fun 𝐺))
109simpld 494 . . . . . . . . . . . . 13 (Fun (𝐹𝐺) → Fun 𝐹)
1110adantr 480 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → Fun 𝐹)
1211adantr 480 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → Fun 𝐹)
13 simprll 779 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐹 ∈ V)
14 simpr 484 . . . . . . . . . . . 12 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
1514adantl 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝑍 ∈ V)
16 funisfsupp 9405 . . . . . . . . . . 11 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
1712, 13, 15, 16syl3anc 1370 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
188, 17mpbird 257 . . . . . . . . 9 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐹 finSupp 𝑍)
19 uncom 4168 . . . . . . . . . . . . . . . 16 (𝐹𝐺) = (𝐺𝐹)
2019oveq1i 7441 . . . . . . . . . . . . . . 15 ((𝐹𝐺) supp 𝑍) = ((𝐺𝐹) supp 𝑍)
2120eleq1i 2830 . . . . . . . . . . . . . 14 (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐺𝐹) supp 𝑍) ∈ Fin)
2221biimpi 216 . . . . . . . . . . . . 13 (((𝐹𝐺) supp 𝑍) ∈ Fin → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2322adantl 481 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2423adantr 480 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2513suppun 8208 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 supp 𝑍) ⊆ ((𝐺𝐹) supp 𝑍))
2624, 25ssfid 9299 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 supp 𝑍) ∈ Fin)
279simprd 495 . . . . . . . . . . . . 13 (Fun (𝐹𝐺) → Fun 𝐺)
2827adantr 480 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → Fun 𝐺)
2928adantr 480 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → Fun 𝐺)
30 funisfsupp 9405 . . . . . . . . . . 11 ((Fun 𝐺𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
3129, 6, 15, 30syl3anc 1370 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
3226, 31mpbird 257 . . . . . . . . 9 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐺 finSupp 𝑍)
3318, 32jca 511 . . . . . . . 8 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))
3433a1d 25 . . . . . . 7 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
3534ex 412 . . . . . 6 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
36 fsuppimp 9406 . . . . . 6 ((𝐹𝐺) finSupp 𝑍 → (Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin))
3735, 36syl11 33 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
383, 37sylanbr 582 . . . 4 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
392, 38mpcom 38 . . 3 ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
4039com12 32 . 2 (𝜑 → ((𝐹𝐺) finSupp 𝑍 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
41 simpl 482 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝐹 finSupp 𝑍)
42 simpr 484 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝐺 finSupp 𝑍)
4341, 42fsuppun 9425 . . . . 5 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
4443adantl 481 . . . 4 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
45 fsuppunbi.u . . . . . 6 (𝜑 → Fun (𝐹𝐺))
4645adantr 480 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → Fun (𝐹𝐺))
471brrelex1i 5745 . . . . . . 7 (𝐹 finSupp 𝑍𝐹 ∈ V)
481brrelex1i 5745 . . . . . . 7 (𝐺 finSupp 𝑍𝐺 ∈ V)
49 unexg 7762 . . . . . . 7 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
5047, 48, 49syl2an 596 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → (𝐹𝐺) ∈ V)
5150adantl 481 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → (𝐹𝐺) ∈ V)
521brrelex2i 5746 . . . . . . 7 (𝐹 finSupp 𝑍𝑍 ∈ V)
5352adantr 480 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝑍 ∈ V)
5453adantl 481 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → 𝑍 ∈ V)
55 funisfsupp 9405 . . . . 5 ((Fun (𝐹𝐺) ∧ (𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
5646, 51, 54, 55syl3anc 1370 . . . 4 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
5744, 56mpbird 257 . . 3 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → (𝐹𝐺) finSupp 𝑍)
5857ex 412 . 2 (𝜑 → ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → (𝐹𝐺) finSupp 𝑍))
5940, 58impbid 212 1 (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  Vcvv 3478  cun 3961   class class class wbr 5148  Fun wfun 6557  (class class class)co 7431   supp csupp 8184  Fincfn 8984   finSupp cfsupp 9399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-supp 8185  df-1o 8505  df-en 8985  df-fin 8988  df-fsupp 9400
This theorem is referenced by:  funsnfsupp  9430  lbsdiflsp0  33654
  Copyright terms: Public domain W3C validator