MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppunbi Structured version   Visualization version   GIF version

Theorem fsuppunbi 9335
Description: If the union of two classes/functions is a function, this union is finitely supported iff the two functions are finitely supported. (Contributed by AV, 18-Jun-2019.)
Hypothesis
Ref Expression
fsuppunbi.u (𝜑 → Fun (𝐹𝐺))
Assertion
Ref Expression
fsuppunbi (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))

Proof of Theorem fsuppunbi
StepHypRef Expression
1 relfsupp 9314 . . . . 5 Rel finSupp
21brrelex12i 5692 . . . 4 ((𝐹𝐺) finSupp 𝑍 → ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
3 unexb 7687 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) ↔ (𝐹𝐺) ∈ V)
4 simpr 485 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
54adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
6 simprlr 778 . . . . . . . . . . . 12 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐺 ∈ V)
76suppun 8120 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))
85, 7ssfid 9218 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 supp 𝑍) ∈ Fin)
9 fununfun 6554 . . . . . . . . . . . . . 14 (Fun (𝐹𝐺) → (Fun 𝐹 ∧ Fun 𝐺))
109simpld 495 . . . . . . . . . . . . 13 (Fun (𝐹𝐺) → Fun 𝐹)
1110adantr 481 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → Fun 𝐹)
1211adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → Fun 𝐹)
13 simprll 777 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐹 ∈ V)
14 simpr 485 . . . . . . . . . . . 12 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
1514adantl 482 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝑍 ∈ V)
16 funisfsupp 9318 . . . . . . . . . . 11 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
1712, 13, 15, 16syl3anc 1371 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
188, 17mpbird 256 . . . . . . . . 9 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐹 finSupp 𝑍)
19 uncom 4118 . . . . . . . . . . . . . . . 16 (𝐹𝐺) = (𝐺𝐹)
2019oveq1i 7372 . . . . . . . . . . . . . . 15 ((𝐹𝐺) supp 𝑍) = ((𝐺𝐹) supp 𝑍)
2120eleq1i 2823 . . . . . . . . . . . . . 14 (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐺𝐹) supp 𝑍) ∈ Fin)
2221biimpi 215 . . . . . . . . . . . . 13 (((𝐹𝐺) supp 𝑍) ∈ Fin → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2322adantl 482 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2423adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2513suppun 8120 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 supp 𝑍) ⊆ ((𝐺𝐹) supp 𝑍))
2624, 25ssfid 9218 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 supp 𝑍) ∈ Fin)
279simprd 496 . . . . . . . . . . . . 13 (Fun (𝐹𝐺) → Fun 𝐺)
2827adantr 481 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → Fun 𝐺)
2928adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → Fun 𝐺)
30 funisfsupp 9318 . . . . . . . . . . 11 ((Fun 𝐺𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
3129, 6, 15, 30syl3anc 1371 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
3226, 31mpbird 256 . . . . . . . . 9 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐺 finSupp 𝑍)
3318, 32jca 512 . . . . . . . 8 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))
3433a1d 25 . . . . . . 7 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
3534ex 413 . . . . . 6 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
36 fsuppimp 9319 . . . . . 6 ((𝐹𝐺) finSupp 𝑍 → (Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin))
3735, 36syl11 33 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
383, 37sylanbr 582 . . . 4 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
392, 38mpcom 38 . . 3 ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
4039com12 32 . 2 (𝜑 → ((𝐹𝐺) finSupp 𝑍 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
41 simpl 483 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝐹 finSupp 𝑍)
42 simpr 485 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝐺 finSupp 𝑍)
4341, 42fsuppun 9333 . . . . 5 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
4443adantl 482 . . . 4 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
45 fsuppunbi.u . . . . . 6 (𝜑 → Fun (𝐹𝐺))
4645adantr 481 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → Fun (𝐹𝐺))
471brrelex1i 5693 . . . . . . 7 (𝐹 finSupp 𝑍𝐹 ∈ V)
481brrelex1i 5693 . . . . . . 7 (𝐺 finSupp 𝑍𝐺 ∈ V)
49 unexg 7688 . . . . . . 7 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
5047, 48, 49syl2an 596 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → (𝐹𝐺) ∈ V)
5150adantl 482 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → (𝐹𝐺) ∈ V)
521brrelex2i 5694 . . . . . . 7 (𝐹 finSupp 𝑍𝑍 ∈ V)
5352adantr 481 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝑍 ∈ V)
5453adantl 482 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → 𝑍 ∈ V)
55 funisfsupp 9318 . . . . 5 ((Fun (𝐹𝐺) ∧ (𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
5646, 51, 54, 55syl3anc 1371 . . . 4 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
5744, 56mpbird 256 . . 3 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → (𝐹𝐺) finSupp 𝑍)
5857ex 413 . 2 (𝜑 → ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → (𝐹𝐺) finSupp 𝑍))
5940, 58impbid 211 1 (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3446  cun 3911   class class class wbr 5110  Fun wfun 6495  (class class class)co 7362   supp csupp 8097  Fincfn 8890   finSupp cfsupp 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-supp 8098  df-1o 8417  df-en 8891  df-fin 8894  df-fsupp 9313
This theorem is referenced by:  funsnfsupp  9338  lbsdiflsp0  32408
  Copyright terms: Public domain W3C validator