MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppunbi Structured version   Visualization version   GIF version

Theorem fsuppunbi 9149
Description: If the union of two classes/functions is a function, this union is finitely supported iff the two functions are finitely supported. (Contributed by AV, 18-Jun-2019.)
Hypothesis
Ref Expression
fsuppunbi.u (𝜑 → Fun (𝐹𝐺))
Assertion
Ref Expression
fsuppunbi (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))

Proof of Theorem fsuppunbi
StepHypRef Expression
1 relfsupp 9130 . . . . 5 Rel finSupp
21brrelex12i 5642 . . . 4 ((𝐹𝐺) finSupp 𝑍 → ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
3 unexb 7598 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) ↔ (𝐹𝐺) ∈ V)
4 simpr 485 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
54adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
6 simprlr 777 . . . . . . . . . . . 12 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐺 ∈ V)
76suppun 8000 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))
85, 7ssfid 9042 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 supp 𝑍) ∈ Fin)
9 fununfun 6482 . . . . . . . . . . . . . 14 (Fun (𝐹𝐺) → (Fun 𝐹 ∧ Fun 𝐺))
109simpld 495 . . . . . . . . . . . . 13 (Fun (𝐹𝐺) → Fun 𝐹)
1110adantr 481 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → Fun 𝐹)
1211adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → Fun 𝐹)
13 simprll 776 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐹 ∈ V)
14 simpr 485 . . . . . . . . . . . 12 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
1514adantl 482 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝑍 ∈ V)
16 funisfsupp 9133 . . . . . . . . . . 11 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
1712, 13, 15, 16syl3anc 1370 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
188, 17mpbird 256 . . . . . . . . 9 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐹 finSupp 𝑍)
19 uncom 4087 . . . . . . . . . . . . . . . 16 (𝐹𝐺) = (𝐺𝐹)
2019oveq1i 7285 . . . . . . . . . . . . . . 15 ((𝐹𝐺) supp 𝑍) = ((𝐺𝐹) supp 𝑍)
2120eleq1i 2829 . . . . . . . . . . . . . 14 (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐺𝐹) supp 𝑍) ∈ Fin)
2221biimpi 215 . . . . . . . . . . . . 13 (((𝐹𝐺) supp 𝑍) ∈ Fin → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2322adantl 482 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2423adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2513suppun 8000 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 supp 𝑍) ⊆ ((𝐺𝐹) supp 𝑍))
2624, 25ssfid 9042 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 supp 𝑍) ∈ Fin)
279simprd 496 . . . . . . . . . . . . 13 (Fun (𝐹𝐺) → Fun 𝐺)
2827adantr 481 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → Fun 𝐺)
2928adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → Fun 𝐺)
30 funisfsupp 9133 . . . . . . . . . . 11 ((Fun 𝐺𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
3129, 6, 15, 30syl3anc 1370 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
3226, 31mpbird 256 . . . . . . . . 9 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐺 finSupp 𝑍)
3318, 32jca 512 . . . . . . . 8 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))
3433a1d 25 . . . . . . 7 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
3534ex 413 . . . . . 6 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
36 fsuppimp 9134 . . . . . 6 ((𝐹𝐺) finSupp 𝑍 → (Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin))
3735, 36syl11 33 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
383, 37sylanbr 582 . . . 4 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
392, 38mpcom 38 . . 3 ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
4039com12 32 . 2 (𝜑 → ((𝐹𝐺) finSupp 𝑍 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
41 simpl 483 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝐹 finSupp 𝑍)
42 simpr 485 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝐺 finSupp 𝑍)
4341, 42fsuppun 9147 . . . . 5 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
4443adantl 482 . . . 4 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
45 fsuppunbi.u . . . . . 6 (𝜑 → Fun (𝐹𝐺))
4645adantr 481 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → Fun (𝐹𝐺))
471brrelex1i 5643 . . . . . . 7 (𝐹 finSupp 𝑍𝐹 ∈ V)
481brrelex1i 5643 . . . . . . 7 (𝐺 finSupp 𝑍𝐺 ∈ V)
49 unexg 7599 . . . . . . 7 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
5047, 48, 49syl2an 596 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → (𝐹𝐺) ∈ V)
5150adantl 482 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → (𝐹𝐺) ∈ V)
521brrelex2i 5644 . . . . . . 7 (𝐹 finSupp 𝑍𝑍 ∈ V)
5352adantr 481 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝑍 ∈ V)
5453adantl 482 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → 𝑍 ∈ V)
55 funisfsupp 9133 . . . . 5 ((Fun (𝐹𝐺) ∧ (𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
5646, 51, 54, 55syl3anc 1370 . . . 4 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
5744, 56mpbird 256 . . 3 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → (𝐹𝐺) finSupp 𝑍)
5857ex 413 . 2 (𝜑 → ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → (𝐹𝐺) finSupp 𝑍))
5940, 58impbid 211 1 (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3432  cun 3885   class class class wbr 5074  Fun wfun 6427  (class class class)co 7275   supp csupp 7977  Fincfn 8733   finSupp cfsupp 9128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-supp 7978  df-1o 8297  df-en 8734  df-fin 8737  df-fsupp 9129
This theorem is referenced by:  funsnfsupp  9152  lbsdiflsp0  31707
  Copyright terms: Public domain W3C validator