MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppunbi Structured version   Visualization version   GIF version

Theorem fsuppunbi 9386
Description: If the union of two classes/functions is a function, this union is finitely supported iff the two functions are finitely supported. (Contributed by AV, 18-Jun-2019.)
Hypothesis
Ref Expression
fsuppunbi.u (𝜑 → Fun (𝐹𝐺))
Assertion
Ref Expression
fsuppunbi (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))

Proof of Theorem fsuppunbi
StepHypRef Expression
1 relfsupp 9365 . . . . 5 Rel finSupp
21brrelex12i 5731 . . . 4 ((𝐹𝐺) finSupp 𝑍 → ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
3 unexb 7737 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) ↔ (𝐹𝐺) ∈ V)
4 simpr 485 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
54adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
6 simprlr 778 . . . . . . . . . . . 12 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐺 ∈ V)
76suppun 8171 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))
85, 7ssfid 9269 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 supp 𝑍) ∈ Fin)
9 fununfun 6596 . . . . . . . . . . . . . 14 (Fun (𝐹𝐺) → (Fun 𝐹 ∧ Fun 𝐺))
109simpld 495 . . . . . . . . . . . . 13 (Fun (𝐹𝐺) → Fun 𝐹)
1110adantr 481 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → Fun 𝐹)
1211adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → Fun 𝐹)
13 simprll 777 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐹 ∈ V)
14 simpr 485 . . . . . . . . . . . 12 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
1514adantl 482 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝑍 ∈ V)
16 funisfsupp 9369 . . . . . . . . . . 11 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
1712, 13, 15, 16syl3anc 1371 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
188, 17mpbird 256 . . . . . . . . 9 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐹 finSupp 𝑍)
19 uncom 4153 . . . . . . . . . . . . . . . 16 (𝐹𝐺) = (𝐺𝐹)
2019oveq1i 7421 . . . . . . . . . . . . . . 15 ((𝐹𝐺) supp 𝑍) = ((𝐺𝐹) supp 𝑍)
2120eleq1i 2824 . . . . . . . . . . . . . 14 (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐺𝐹) supp 𝑍) ∈ Fin)
2221biimpi 215 . . . . . . . . . . . . 13 (((𝐹𝐺) supp 𝑍) ∈ Fin → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2322adantl 482 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2423adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2513suppun 8171 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 supp 𝑍) ⊆ ((𝐺𝐹) supp 𝑍))
2624, 25ssfid 9269 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 supp 𝑍) ∈ Fin)
279simprd 496 . . . . . . . . . . . . 13 (Fun (𝐹𝐺) → Fun 𝐺)
2827adantr 481 . . . . . . . . . . . 12 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → Fun 𝐺)
2928adantr 481 . . . . . . . . . . 11 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → Fun 𝐺)
30 funisfsupp 9369 . . . . . . . . . . 11 ((Fun 𝐺𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
3129, 6, 15, 30syl3anc 1371 . . . . . . . . . 10 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
3226, 31mpbird 256 . . . . . . . . 9 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → 𝐺 finSupp 𝑍)
3318, 32jca 512 . . . . . . . 8 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))
3433a1d 25 . . . . . . 7 (((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) ∧ ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V)) → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
3534ex 413 . . . . . 6 ((Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin) → (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
36 fsuppimp 9370 . . . . . 6 ((𝐹𝐺) finSupp 𝑍 → (Fun (𝐹𝐺) ∧ ((𝐹𝐺) supp 𝑍) ∈ Fin))
3735, 36syl11 33 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
383, 37sylanbr 582 . . . 4 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
392, 38mpcom 38 . . 3 ((𝐹𝐺) finSupp 𝑍 → (𝜑 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
4039com12 32 . 2 (𝜑 → ((𝐹𝐺) finSupp 𝑍 → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
41 simpl 483 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝐹 finSupp 𝑍)
42 simpr 485 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝐺 finSupp 𝑍)
4341, 42fsuppun 9384 . . . . 5 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
4443adantl 482 . . . 4 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
45 fsuppunbi.u . . . . . 6 (𝜑 → Fun (𝐹𝐺))
4645adantr 481 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → Fun (𝐹𝐺))
471brrelex1i 5732 . . . . . . 7 (𝐹 finSupp 𝑍𝐹 ∈ V)
481brrelex1i 5732 . . . . . . 7 (𝐺 finSupp 𝑍𝐺 ∈ V)
49 unexg 7738 . . . . . . 7 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
5047, 48, 49syl2an 596 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → (𝐹𝐺) ∈ V)
5150adantl 482 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → (𝐹𝐺) ∈ V)
521brrelex2i 5733 . . . . . . 7 (𝐹 finSupp 𝑍𝑍 ∈ V)
5352adantr 481 . . . . . 6 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → 𝑍 ∈ V)
5453adantl 482 . . . . 5 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → 𝑍 ∈ V)
55 funisfsupp 9369 . . . . 5 ((Fun (𝐹𝐺) ∧ (𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
5646, 51, 54, 55syl3anc 1371 . . . 4 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
5744, 56mpbird 256 . . 3 ((𝜑 ∧ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)) → (𝐹𝐺) finSupp 𝑍)
5857ex 413 . 2 (𝜑 → ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → (𝐹𝐺) finSupp 𝑍))
5940, 58impbid 211 1 (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3474  cun 3946   class class class wbr 5148  Fun wfun 6537  (class class class)co 7411   supp csupp 8148  Fincfn 8941   finSupp cfsupp 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-supp 8149  df-1o 8468  df-en 8942  df-fin 8945  df-fsupp 9364
This theorem is referenced by:  funsnfsupp  9389  lbsdiflsp0  32770
  Copyright terms: Public domain W3C validator