MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppss Structured version   Visualization version   GIF version

Theorem fsuppss 9412
Description: A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025.)
Hypotheses
Ref Expression
fsuppss.1 (𝜑𝐹𝐺)
fsuppss.2 (𝜑𝐺 finSupp 𝑍)
Assertion
Ref Expression
fsuppss (𝜑𝐹 finSupp 𝑍)

Proof of Theorem fsuppss
StepHypRef Expression
1 relfsupp 9393 . . . 4 Rel finSupp
2 fsuppss.2 . . . 4 (𝜑𝐺 finSupp 𝑍)
3 brrelex1 5733 . . . 4 ((Rel finSupp ∧ 𝐺 finSupp 𝑍) → 𝐺 ∈ V)
41, 2, 3sylancr 585 . . 3 (𝜑𝐺 ∈ V)
5 fsuppss.1 . . 3 (𝜑𝐹𝐺)
64, 5ssexd 5326 . 2 (𝜑𝐹 ∈ V)
7 brrelex2 5734 . . 3 ((Rel finSupp ∧ 𝐺 finSupp 𝑍) → 𝑍 ∈ V)
81, 2, 7sylancr 585 . 2 (𝜑𝑍 ∈ V)
92fsuppfund 9400 . . 3 (𝜑 → Fun 𝐺)
10 funss 6575 . . 3 (𝐹𝐺 → (Fun 𝐺 → Fun 𝐹))
115, 9, 10sylc 65 . 2 (𝜑 → Fun 𝐹)
12 funsssuppss 8199 . . 3 ((Fun 𝐺𝐹𝐺𝐺 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
139, 5, 4, 12syl3anc 1368 . 2 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
146, 8, 11, 2, 13fsuppsssuppgd 9411 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3471  wss 3947   class class class wbr 5150  Rel wrel 5685  Fun wfun 6545  (class class class)co 7424   supp csupp 8169   finSupp cfsupp 9391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-supp 8170  df-1o 8491  df-en 8969  df-fin 8972  df-fsupp 9392
This theorem is referenced by:  mhphf  41833
  Copyright terms: Public domain W3C validator