![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsuppss | Structured version Visualization version GIF version |
Description: A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025.) |
Ref | Expression |
---|---|
fsuppss.1 | ⊢ (𝜑 → 𝐹 ⊆ 𝐺) |
fsuppss.2 | ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
Ref | Expression |
---|---|
fsuppss | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfsupp 9362 | . . . 4 ⊢ Rel finSupp | |
2 | fsuppss.2 | . . . 4 ⊢ (𝜑 → 𝐺 finSupp 𝑍) | |
3 | brrelex1 5729 | . . . 4 ⊢ ((Rel finSupp ∧ 𝐺 finSupp 𝑍) → 𝐺 ∈ V) | |
4 | 1, 2, 3 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
5 | fsuppss.1 | . . 3 ⊢ (𝜑 → 𝐹 ⊆ 𝐺) | |
6 | 4, 5 | ssexd 5324 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
7 | brrelex2 5730 | . . 3 ⊢ ((Rel finSupp ∧ 𝐺 finSupp 𝑍) → 𝑍 ∈ V) | |
8 | 1, 2, 7 | sylancr 587 | . 2 ⊢ (𝜑 → 𝑍 ∈ V) |
9 | 2 | fsuppfund 41065 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
10 | funss 6567 | . . 3 ⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐺 → Fun 𝐹)) | |
11 | 5, 9, 10 | sylc 65 | . 2 ⊢ (𝜑 → Fun 𝐹) |
12 | funsssuppss 8174 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) | |
13 | 9, 5, 4, 12 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) |
14 | 6, 8, 11, 2, 13 | fsuppsssuppgd 41066 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 class class class wbr 5148 Rel wrel 5681 Fun wfun 6537 (class class class)co 7408 supp csupp 8145 finSupp cfsupp 9360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-supp 8146 df-1o 8465 df-en 8939 df-fin 8942 df-fsupp 9361 |
This theorem is referenced by: mhphf 41171 |
Copyright terms: Public domain | W3C validator |