| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppss | Structured version Visualization version GIF version | ||
| Description: A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| fsuppss.1 | ⊢ (𝜑 → 𝐹 ⊆ 𝐺) |
| fsuppss.2 | ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppss | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfsupp 9272 | . . . 4 ⊢ Rel finSupp | |
| 2 | fsuppss.2 | . . . 4 ⊢ (𝜑 → 𝐺 finSupp 𝑍) | |
| 3 | brrelex1 5676 | . . . 4 ⊢ ((Rel finSupp ∧ 𝐺 finSupp 𝑍) → 𝐺 ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 5 | fsuppss.1 | . . 3 ⊢ (𝜑 → 𝐹 ⊆ 𝐺) | |
| 6 | 4, 5 | ssexd 5266 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 7 | brrelex2 5677 | . . 3 ⊢ ((Rel finSupp ∧ 𝐺 finSupp 𝑍) → 𝑍 ∈ V) | |
| 8 | 1, 2, 7 | sylancr 587 | . 2 ⊢ (𝜑 → 𝑍 ∈ V) |
| 9 | 2 | fsuppfund 9279 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
| 10 | funss 6505 | . . 3 ⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐺 → Fun 𝐹)) | |
| 11 | 5, 9, 10 | sylc 65 | . 2 ⊢ (𝜑 → Fun 𝐹) |
| 12 | funsssuppss 8130 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) | |
| 13 | 9, 5, 4, 12 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) |
| 14 | 6, 8, 11, 2, 13 | fsuppsssuppgd 9291 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 Rel wrel 5628 Fun wfun 6480 (class class class)co 7353 supp csupp 8100 finSupp cfsupp 9270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-supp 8101 df-1o 8395 df-en 8880 df-fin 8883 df-fsupp 9271 |
| This theorem is referenced by: mhphf 42570 |
| Copyright terms: Public domain | W3C validator |