| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppss | Structured version Visualization version GIF version | ||
| Description: A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| fsuppss.1 | ⊢ (𝜑 → 𝐹 ⊆ 𝐺) |
| fsuppss.2 | ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppss | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfsupp 9254 | . . . 4 ⊢ Rel finSupp | |
| 2 | fsuppss.2 | . . . 4 ⊢ (𝜑 → 𝐺 finSupp 𝑍) | |
| 3 | brrelex1 5672 | . . . 4 ⊢ ((Rel finSupp ∧ 𝐺 finSupp 𝑍) → 𝐺 ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 5 | fsuppss.1 | . . 3 ⊢ (𝜑 → 𝐹 ⊆ 𝐺) | |
| 6 | 4, 5 | ssexd 5264 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 7 | brrelex2 5673 | . . 3 ⊢ ((Rel finSupp ∧ 𝐺 finSupp 𝑍) → 𝑍 ∈ V) | |
| 8 | 1, 2, 7 | sylancr 587 | . 2 ⊢ (𝜑 → 𝑍 ∈ V) |
| 9 | 2 | fsuppfund 9261 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
| 10 | funss 6505 | . . 3 ⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐺 → Fun 𝐹)) | |
| 11 | 5, 9, 10 | sylc 65 | . 2 ⊢ (𝜑 → Fun 𝐹) |
| 12 | funsssuppss 8126 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) | |
| 13 | 9, 5, 4, 12 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) |
| 14 | 6, 8, 11, 2, 13 | fsuppsssuppgd 9273 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 class class class wbr 5093 Rel wrel 5624 Fun wfun 6480 (class class class)co 7352 supp csupp 8096 finSupp cfsupp 9252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-supp 8097 df-1o 8391 df-en 8876 df-fin 8879 df-fsupp 9253 |
| This theorem is referenced by: mhphf 42716 |
| Copyright terms: Public domain | W3C validator |