| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppss | Structured version Visualization version GIF version | ||
| Description: A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| fsuppss.1 | ⊢ (𝜑 → 𝐹 ⊆ 𝐺) |
| fsuppss.2 | ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppss | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfsupp 9314 | . . . 4 ⊢ Rel finSupp | |
| 2 | fsuppss.2 | . . . 4 ⊢ (𝜑 → 𝐺 finSupp 𝑍) | |
| 3 | brrelex1 5691 | . . . 4 ⊢ ((Rel finSupp ∧ 𝐺 finSupp 𝑍) → 𝐺 ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 5 | fsuppss.1 | . . 3 ⊢ (𝜑 → 𝐹 ⊆ 𝐺) | |
| 6 | 4, 5 | ssexd 5279 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 7 | brrelex2 5692 | . . 3 ⊢ ((Rel finSupp ∧ 𝐺 finSupp 𝑍) → 𝑍 ∈ V) | |
| 8 | 1, 2, 7 | sylancr 587 | . 2 ⊢ (𝜑 → 𝑍 ∈ V) |
| 9 | 2 | fsuppfund 9321 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
| 10 | funss 6535 | . . 3 ⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐺 → Fun 𝐹)) | |
| 11 | 5, 9, 10 | sylc 65 | . 2 ⊢ (𝜑 → Fun 𝐹) |
| 12 | funsssuppss 8169 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) | |
| 13 | 9, 5, 4, 12 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) |
| 14 | 6, 8, 11, 2, 13 | fsuppsssuppgd 9333 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 Rel wrel 5643 Fun wfun 6505 (class class class)co 7387 supp csupp 8139 finSupp cfsupp 9312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-supp 8140 df-1o 8434 df-en 8919 df-fin 8922 df-fsupp 9313 |
| This theorem is referenced by: mhphf 42585 |
| Copyright terms: Public domain | W3C validator |