![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relprcnfsupp | Structured version Visualization version GIF version |
Description: A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
relprcnfsupp | ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfsupp 9394 | . . 3 ⊢ Rel finSupp | |
2 | 1 | brrelex1i 5734 | . 2 ⊢ (𝐴 finSupp 𝑍 → 𝐴 ∈ V) |
3 | 2 | con3i 154 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 Vcvv 3461 class class class wbr 5149 finSupp cfsupp 9392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-fsupp 9393 |
This theorem is referenced by: fsuppres 9423 |
Copyright terms: Public domain | W3C validator |