| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relprcnfsupp | Structured version Visualization version GIF version | ||
| Description: A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019.) |
| Ref | Expression |
|---|---|
| relprcnfsupp | ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfsupp 9290 | . . 3 ⊢ Rel finSupp | |
| 2 | 1 | brrelex1i 5687 | . 2 ⊢ (𝐴 finSupp 𝑍 → 𝐴 ∈ V) |
| 3 | 2 | con3i 154 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 finSupp cfsupp 9288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-fsupp 9289 |
| This theorem is referenced by: fsuppres 9320 |
| Copyright terms: Public domain | W3C validator |