![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relprcnfsupp | Structured version Visualization version GIF version |
Description: A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
relprcnfsupp | ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfsupp 9433 | . . 3 ⊢ Rel finSupp | |
2 | 1 | brrelex1i 5756 | . 2 ⊢ (𝐴 finSupp 𝑍 → 𝐴 ∈ V) |
3 | 2 | con3i 154 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 finSupp cfsupp 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-fsupp 9432 |
This theorem is referenced by: fsuppres 9462 |
Copyright terms: Public domain | W3C validator |