MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relprcnfsupp Structured version   Visualization version   GIF version

Theorem relprcnfsupp 9434
Description: A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019.)
Assertion
Ref Expression
relprcnfsupp 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍)

Proof of Theorem relprcnfsupp
StepHypRef Expression
1 relfsupp 9433 . . 3 Rel finSupp
21brrelex1i 5756 . 2 (𝐴 finSupp 𝑍𝐴 ∈ V)
32con3i 154 1 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  Vcvv 3488   class class class wbr 5166   finSupp cfsupp 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-fsupp 9432
This theorem is referenced by:  fsuppres  9462
  Copyright terms: Public domain W3C validator