MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relprcnfsupp Structured version   Visualization version   GIF version

Theorem relprcnfsupp 9315
Description: A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019.)
Assertion
Ref Expression
relprcnfsupp 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍)

Proof of Theorem relprcnfsupp
StepHypRef Expression
1 relfsupp 9314 . . 3 Rel finSupp
21brrelex1i 5694 . 2 (𝐴 finSupp 𝑍𝐴 ∈ V)
32con3i 154 1 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  Vcvv 3447   class class class wbr 5107   finSupp cfsupp 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-fsupp 9313
This theorem is referenced by:  fsuppres  9344
  Copyright terms: Public domain W3C validator