| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppimp | Structured version Visualization version GIF version | ||
| Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019.) |
| Ref | Expression |
|---|---|
| fsuppimp | ⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfsupp 9404 | . . 3 ⊢ Rel finSupp | |
| 2 | 1 | brrelex12i 5739 | . 2 ⊢ (𝑅 finSupp 𝑍 → (𝑅 ∈ V ∧ 𝑍 ∈ V)) |
| 3 | isfsupp 9406 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
| 4 | 3 | biimpd 229 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 5 | 2, 4 | mpcom 38 | 1 ⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 Vcvv 3479 class class class wbr 5142 Fun wfun 6554 (class class class)co 7432 supp csupp 8186 Fincfn 8986 finSupp cfsupp 9402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-fsupp 9403 |
| This theorem is referenced by: fsuppimpd 9410 fsuppfund 9411 fsuppunfi 9429 fsuppunbi 9430 fsuppres 9434 fsuppco 9443 oemapvali 9725 mptnn0fsuppr 14041 gsumzres 19928 gsumzf1o 19931 |
| Copyright terms: Public domain | W3C validator |