MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppimp Structured version   Visualization version   GIF version

Theorem fsuppimp 9252
Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019.)
Assertion
Ref Expression
fsuppimp (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))

Proof of Theorem fsuppimp
StepHypRef Expression
1 relfsupp 9247 . . 3 Rel finSupp
21brrelex12i 5671 . 2 (𝑅 finSupp 𝑍 → (𝑅 ∈ V ∧ 𝑍 ∈ V))
3 isfsupp 9249 . . 3 ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
43biimpd 229 . 2 ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
52, 4mpcom 38 1 (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Vcvv 3436   class class class wbr 5091  Fun wfun 6475  (class class class)co 7346   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-fsupp 9246
This theorem is referenced by:  fsuppimpd  9253  fsuppfund  9254  fsuppunfi  9272  fsuppunbi  9273  fsuppres  9277  fsuppco  9286  oemapvali  9574  mptnn0fsuppr  13903  gsumzres  19819  gsumzf1o  19822
  Copyright terms: Public domain W3C validator