![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppimp | Structured version Visualization version GIF version |
Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019.) |
Ref | Expression |
---|---|
fsuppimp | ⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfsupp 9401 | . . 3 ⊢ Rel finSupp | |
2 | 1 | brrelex12i 5744 | . 2 ⊢ (𝑅 finSupp 𝑍 → (𝑅 ∈ V ∧ 𝑍 ∈ V)) |
3 | isfsupp 9403 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
4 | 3 | biimpd 229 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
5 | 2, 4 | mpcom 38 | 1 ⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 Fun wfun 6557 (class class class)co 7431 supp csupp 8184 Fincfn 8984 finSupp cfsupp 9399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-fsupp 9400 |
This theorem is referenced by: fsuppimpd 9407 fsuppfund 9408 fsuppunfi 9426 fsuppunbi 9427 fsuppres 9431 fsuppco 9440 oemapvali 9722 mptnn0fsuppr 14037 gsumzres 19942 gsumzf1o 19945 |
Copyright terms: Public domain | W3C validator |