| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppimp | Structured version Visualization version GIF version | ||
| Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019.) |
| Ref | Expression |
|---|---|
| fsuppimp | ⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfsupp 9380 | . . 3 ⊢ Rel finSupp | |
| 2 | 1 | brrelex12i 5714 | . 2 ⊢ (𝑅 finSupp 𝑍 → (𝑅 ∈ V ∧ 𝑍 ∈ V)) |
| 3 | isfsupp 9382 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
| 4 | 3 | biimpd 229 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 5 | 2, 4 | mpcom 38 | 1 ⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 Fun wfun 6530 (class class class)co 7410 supp csupp 8164 Fincfn 8964 finSupp cfsupp 9378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-fsupp 9379 |
| This theorem is referenced by: fsuppimpd 9386 fsuppfund 9387 fsuppunfi 9405 fsuppunbi 9406 fsuppres 9410 fsuppco 9419 oemapvali 9703 mptnn0fsuppr 14022 gsumzres 19895 gsumzf1o 19898 |
| Copyright terms: Public domain | W3C validator |