| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppimp | Structured version Visualization version GIF version | ||
| Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019.) |
| Ref | Expression |
|---|---|
| fsuppimp | ⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfsupp 9321 | . . 3 ⊢ Rel finSupp | |
| 2 | 1 | brrelex12i 5696 | . 2 ⊢ (𝑅 finSupp 𝑍 → (𝑅 ∈ V ∧ 𝑍 ∈ V)) |
| 3 | isfsupp 9323 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
| 4 | 3 | biimpd 229 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 5 | 2, 4 | mpcom 38 | 1 ⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 Fun wfun 6508 (class class class)co 7390 supp csupp 8142 Fincfn 8921 finSupp cfsupp 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-fsupp 9320 |
| This theorem is referenced by: fsuppimpd 9327 fsuppfund 9328 fsuppunfi 9346 fsuppunbi 9347 fsuppres 9351 fsuppco 9360 oemapvali 9644 mptnn0fsuppr 13971 gsumzres 19846 gsumzf1o 19849 |
| Copyright terms: Public domain | W3C validator |