| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppimp | Structured version Visualization version GIF version | ||
| Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019.) |
| Ref | Expression |
|---|---|
| fsuppimp | ⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfsupp 9254 | . . 3 ⊢ Rel finSupp | |
| 2 | 1 | brrelex12i 5674 | . 2 ⊢ (𝑅 finSupp 𝑍 → (𝑅 ∈ V ∧ 𝑍 ∈ V)) |
| 3 | isfsupp 9256 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
| 4 | 3 | biimpd 229 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 5 | 2, 4 | mpcom 38 | 1 ⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 Fun wfun 6480 (class class class)co 7352 supp csupp 8096 Fincfn 8875 finSupp cfsupp 9252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-fsupp 9253 |
| This theorem is referenced by: fsuppimpd 9260 fsuppfund 9261 fsuppunfi 9279 fsuppunbi 9280 fsuppres 9284 fsuppco 9293 oemapvali 9581 mptnn0fsuppr 13908 gsumzres 19823 gsumzf1o 19826 |
| Copyright terms: Public domain | W3C validator |