MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppimp Structured version   Visualization version   GIF version

Theorem fsuppimp 9277
Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019.)
Assertion
Ref Expression
fsuppimp (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))

Proof of Theorem fsuppimp
StepHypRef Expression
1 relfsupp 9272 . . 3 Rel finSupp
21brrelex12i 5678 . 2 (𝑅 finSupp 𝑍 → (𝑅 ∈ V ∧ 𝑍 ∈ V))
3 isfsupp 9274 . . 3 ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
43biimpd 229 . 2 ((𝑅 ∈ V ∧ 𝑍 ∈ V) → (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
52, 4mpcom 38 1 (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3438   class class class wbr 5095  Fun wfun 6480  (class class class)co 7353   supp csupp 8100  Fincfn 8879   finSupp cfsupp 9270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-fsupp 9271
This theorem is referenced by:  fsuppimpd  9278  fsuppfund  9279  fsuppunfi  9297  fsuppunbi  9298  fsuppres  9302  fsuppco  9311  oemapvali  9599  mptnn0fsuppr  13924  gsumzres  19806  gsumzf1o  19809
  Copyright terms: Public domain W3C validator