|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fsuppsssupp | Structured version Visualization version GIF version | ||
| Description: If the support of a function is a subset of the support of a finitely supported function, the function is finitely supported. (Contributed by AV, 2-Jul-2019.) (Proof shortened by AV, 15-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| fsuppsssupp | ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 ∈ 𝑉) | |
| 2 | simplr 768 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → Fun 𝐺) | |
| 3 | relfsupp 9404 | . . . 4 ⊢ Rel finSupp | |
| 4 | 3 | brrelex2i 5741 | . . 3 ⊢ (𝐹 finSupp 𝑍 → 𝑍 ∈ V) | 
| 5 | 4 | ad2antrl 728 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝑍 ∈ V) | 
| 6 | id 22 | . . . . 5 ⊢ (𝐹 finSupp 𝑍 → 𝐹 finSupp 𝑍) | |
| 7 | 6 | fsuppimpd 9410 | . . . 4 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) | 
| 8 | 7 | anim1i 615 | . . 3 ⊢ ((𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) | 
| 9 | 8 | adantl 481 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → ((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) | 
| 10 | suppssfifsupp 9421 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ V) ∧ ((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍) | |
| 11 | 1, 2, 5, 9, 10 | syl31anc 1374 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 class class class wbr 5142 Fun wfun 6554 (class class class)co 7432 supp csupp 8186 Fincfn 8986 finSupp cfsupp 9402 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-1o 8507 df-en 8987 df-fin 8990 df-fsupp 9403 | 
| This theorem is referenced by: cantnflem1 9730 dprdfinv 20040 dmdprdsplitlem 20058 dpjidcl 20079 frlmphllem 21801 frlmphl 21802 rrxcph 25427 tdeglem4 26100 elrspunidl 33457 | 
| Copyright terms: Public domain | W3C validator |