MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppsssupp Structured version   Visualization version   GIF version

Theorem fsuppsssupp 9332
Description: If the support of a function is a subset of the support of a finitely supported function, the function is finitely supported. (Contributed by AV, 2-Jul-2019.) (Proof shortened by AV, 15-Jul-2019.)
Assertion
Ref Expression
fsuppsssupp (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍)

Proof of Theorem fsuppsssupp
StepHypRef Expression
1 simpll 766 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺𝑉)
2 simplr 768 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → Fun 𝐺)
3 relfsupp 9314 . . . 4 Rel finSupp
43brrelex2i 5695 . . 3 (𝐹 finSupp 𝑍𝑍 ∈ V)
54ad2antrl 728 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝑍 ∈ V)
6 id 22 . . . . 5 (𝐹 finSupp 𝑍𝐹 finSupp 𝑍)
76fsuppimpd 9320 . . . 4 (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin)
87anim1i 615 . . 3 ((𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍)))
98adantl 481 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → ((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍)))
10 suppssfifsupp 9331 . 2 (((𝐺𝑉 ∧ Fun 𝐺𝑍 ∈ V) ∧ ((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍)
111, 2, 5, 9, 10syl31anc 1375 1 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3447  wss 3914   class class class wbr 5107  Fun wfun 6505  (class class class)co 7387   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922  df-fsupp 9313
This theorem is referenced by:  cantnflem1  9642  dprdfinv  19951  dmdprdsplitlem  19969  dpjidcl  19990  frlmphllem  21689  frlmphl  21690  rrxcph  25292  tdeglem4  25965  elrspunidl  33399
  Copyright terms: Public domain W3C validator