Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsuppsssupp | Structured version Visualization version GIF version |
Description: If the support of a function is a subset of the support of a finitely supported function, the function is finitely supported. (Contributed by AV, 2-Jul-2019.) (Proof shortened by AV, 15-Jul-2019.) |
Ref | Expression |
---|---|
fsuppsssupp | ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 765 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 ∈ 𝑉) | |
2 | simplr 767 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → Fun 𝐺) | |
3 | relfsupp 9174 | . . . 4 ⊢ Rel finSupp | |
4 | 3 | brrelex2i 5655 | . . 3 ⊢ (𝐹 finSupp 𝑍 → 𝑍 ∈ V) |
5 | 4 | ad2antrl 726 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝑍 ∈ V) |
6 | id 22 | . . . . 5 ⊢ (𝐹 finSupp 𝑍 → 𝐹 finSupp 𝑍) | |
7 | 6 | fsuppimpd 9179 | . . . 4 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
8 | 7 | anim1i 616 | . . 3 ⊢ ((𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) |
9 | 8 | adantl 483 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → ((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) |
10 | suppssfifsupp 9187 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ V) ∧ ((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍) | |
11 | 1, 2, 5, 9, 10 | syl31anc 1373 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 class class class wbr 5081 Fun wfun 6452 (class class class)co 7307 supp csupp 8008 Fincfn 8764 finSupp cfsupp 9172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-1o 8328 df-en 8765 df-fin 8768 df-fsupp 9173 |
This theorem is referenced by: cantnflem1 9491 dprdfinv 19667 dmdprdsplitlem 19685 dpjidcl 19706 frlmphllem 21032 frlmphl 21033 rrxcph 24601 tdeglem4 25269 tdeglem4OLD 25270 elrspunidl 31651 |
Copyright terms: Public domain | W3C validator |