![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reloprab | Structured version Visualization version GIF version |
Description: An operation class abstraction is a relation. (Contributed by NM, 16-Jun-2004.) |
Ref | Expression |
---|---|
reloprab | ⊢ Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 7470 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
2 | 1 | relopabiv 5820 | 1 ⊢ Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1780 ⟨cop 4634 Rel wrel 5681 {coprab 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-xp 5682 df-rel 5683 df-oprab 7416 |
This theorem is referenced by: oprabv 7472 oprabss 7518 brcnvrabga 37678 |
Copyright terms: Public domain | W3C validator |