MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reloprab Structured version   Visualization version   GIF version

Theorem reloprab 7405
Description: An operation class abstraction is a relation. (Contributed by NM, 16-Jun-2004.)
Assertion
Ref Expression
reloprab Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem reloprab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 7404 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
21relopabiv 5759 1 Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  cop 4579  Rel wrel 5619  {coprab 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-opab 5152  df-xp 5620  df-rel 5621  df-oprab 7350
This theorem is referenced by:  oprabv  7406  oprabss  7454  brcnvrabga  38384
  Copyright terms: Public domain W3C validator