Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oprabss | Structured version Visualization version GIF version |
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.) |
Ref | Expression |
---|---|
oprabss | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ ((V × V) × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reloprab 7230 | . . 3 ⊢ Rel {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
2 | relssdmrn 6102 | . . 3 ⊢ (Rel {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
4 | reldmoprab 7276 | . . . 4 ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
5 | df-rel 5533 | . . . 4 ⊢ (Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) | |
6 | 4, 5 | mpbi 233 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (V × V) |
7 | ssv 3902 | . . 3 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ V | |
8 | xpss12 5541 | . . 3 ⊢ ((dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (V × V) ∧ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ V) → (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) ⊆ ((V × V) × V)) | |
9 | 6, 7, 8 | mp2an 692 | . 2 ⊢ (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) ⊆ ((V × V) × V) |
10 | 3, 9 | sstri 3887 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ ((V × V) × V) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3399 ⊆ wss 3844 × cxp 5524 dom cdm 5526 ran crn 5527 Rel wrel 5531 {coprab 7174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-rex 3060 df-v 3401 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-br 5032 df-opab 5094 df-xp 5532 df-rel 5533 df-cnv 5534 df-dm 5536 df-rn 5537 df-oprab 7177 |
This theorem is referenced by: elmpps 33109 |
Copyright terms: Public domain | W3C validator |