![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprabss | Structured version Visualization version GIF version |
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.) |
Ref | Expression |
---|---|
oprabss | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ ((V × V) × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reloprab 7479 | . . 3 ⊢ Rel {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
2 | relssdmrn 6272 | . . 3 ⊢ (Rel {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
4 | reldmoprab 7526 | . . . 4 ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
5 | df-rel 5685 | . . . 4 ⊢ (Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) | |
6 | 4, 5 | mpbi 229 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (V × V) |
7 | ssv 4004 | . . 3 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ V | |
8 | xpss12 5693 | . . 3 ⊢ ((dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (V × V) ∧ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ V) → (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) ⊆ ((V × V) × V)) | |
9 | 6, 7, 8 | mp2an 691 | . 2 ⊢ (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) ⊆ ((V × V) × V) |
10 | 3, 9 | sstri 3989 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ ((V × V) × V) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3471 ⊆ wss 3947 × cxp 5676 dom cdm 5678 ran crn 5679 Rel wrel 5683 {coprab 7421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-cnv 5686 df-dm 5688 df-rn 5689 df-oprab 7424 |
This theorem is referenced by: elmpps 35183 |
Copyright terms: Public domain | W3C validator |