MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabss Structured version   Visualization version   GIF version

Theorem oprabss 7359
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
Assertion
Ref Expression
oprabss {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem oprabss
StepHypRef Expression
1 reloprab 7312 . . 3 Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
2 relssdmrn 6161 . . 3 (Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
31, 2ax-mp 5 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
4 reldmoprab 7358 . . . 4 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
5 df-rel 5587 . . . 4 (Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
64, 5mpbi 229 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)
7 ssv 3941 . . 3 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ V
8 xpss12 5595 . . 3 ((dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) ∧ ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ V) → (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ⊆ ((V × V) × V))
96, 7, 8mp2an 688 . 2 (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ⊆ ((V × V) × V)
103, 9sstri 3926 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3422  wss 3883   × cxp 5578  dom cdm 5580  ran crn 5581  Rel wrel 5585  {coprab 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-oprab 7259
This theorem is referenced by:  elmpps  33435
  Copyright terms: Public domain W3C validator