MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabss Structured version   Visualization version   GIF version

Theorem oprabss 7239
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
Assertion
Ref Expression
oprabss {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem oprabss
StepHypRef Expression
1 reloprab 7192 . . 3 Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
2 relssdmrn 6088 . . 3 (Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
31, 2ax-mp 5 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
4 reldmoprab 7238 . . . 4 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
5 df-rel 5526 . . . 4 (Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
64, 5mpbi 233 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)
7 ssv 3939 . . 3 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ V
8 xpss12 5534 . . 3 ((dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) ∧ ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ V) → (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ⊆ ((V × V) × V))
96, 7, 8mp2an 691 . 2 (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ⊆ ((V × V) × V)
103, 9sstri 3924 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3441  wss 3881   × cxp 5517  dom cdm 5519  ran crn 5520  Rel wrel 5524  {coprab 7136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-cnv 5527  df-dm 5529  df-rn 5530  df-oprab 7139
This theorem is referenced by:  elmpps  32933
  Copyright terms: Public domain W3C validator