| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oprabss | Structured version Visualization version GIF version | ||
| Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.) |
| Ref | Expression |
|---|---|
| oprabss | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ ((V × V) × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reloprab 7448 | . . 3 ⊢ Rel {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
| 2 | relssdmrn 6241 | . . 3 ⊢ (Rel {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑})) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
| 4 | reldmoprab 7496 | . . . 4 ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
| 5 | df-rel 5645 | . . . 4 ⊢ (Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (V × V) |
| 7 | ssv 3971 | . . 3 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ V | |
| 8 | xpss12 5653 | . . 3 ⊢ ((dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ (V × V) ∧ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ V) → (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) ⊆ ((V × V) × V)) | |
| 9 | 6, 7, 8 | mp2an 692 | . 2 ⊢ (dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} × ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) ⊆ ((V × V) × V) |
| 10 | 3, 9 | sstri 3956 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ ((V × V) × V) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ⊆ wss 3914 × cxp 5636 dom cdm 5638 ran crn 5639 Rel wrel 5643 {coprab 7388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-oprab 7391 |
| This theorem is referenced by: elmpps 35560 |
| Copyright terms: Public domain | W3C validator |