Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsuppres | Structured version Visualization version GIF version |
Description: The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.) |
Ref | Expression |
---|---|
fsuppres.s | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
fsuppres.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fsuppres | ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppres.s | . . 3 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
2 | fsuppimp 9134 | . . . 4 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
3 | relprcnfsupp 9131 | . . . . . . . . . . . 12 ⊢ (¬ 𝐹 ∈ V → ¬ 𝐹 finSupp 𝑍) | |
4 | 3 | con4i 114 | . . . . . . . . . . 11 ⊢ (𝐹 finSupp 𝑍 → 𝐹 ∈ V) |
5 | 1, 4 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ V) |
6 | fsuppres.z | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
7 | 5, 6 | jca 512 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉)) |
8 | 7 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ Fun 𝐹) → (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉)) |
9 | ressuppss 7999 | . . . . . . . 8 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
10 | ssfi 8956 | . . . . . . . . 9 ⊢ (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin) | |
11 | 10 | expcom 414 | . . . . . . . 8 ⊢ (((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
12 | 8, 9, 11 | 3syl 18 | . . . . . . 7 ⊢ ((𝜑 ∧ Fun 𝐹) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
13 | 12 | expcom 414 | . . . . . 6 ⊢ (Fun 𝐹 → (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin))) |
14 | 13 | com23 86 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin))) |
15 | 14 | imp 407 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
16 | 2, 15 | syl 17 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
17 | 1, 16 | mpcom 38 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin) |
18 | funres 6476 | . . . . 5 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝑋)) | |
19 | 18 | adantr 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → Fun (𝐹 ↾ 𝑋)) |
20 | 1, 2, 19 | 3syl 18 | . . 3 ⊢ (𝜑 → Fun (𝐹 ↾ 𝑋)) |
21 | resexg 5937 | . . . 4 ⊢ (𝐹 ∈ V → (𝐹 ↾ 𝑋) ∈ V) | |
22 | 1, 4, 21 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑋) ∈ V) |
23 | funisfsupp 9133 | . . 3 ⊢ ((Fun (𝐹 ↾ 𝑋) ∧ (𝐹 ↾ 𝑋) ∈ V ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝑋) finSupp 𝑍 ↔ ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) | |
24 | 20, 22, 6, 23 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝑋) finSupp 𝑍 ↔ ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
25 | 17, 24 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 ↾ cres 5591 Fun wfun 6427 (class class class)co 7275 supp csupp 7977 Fincfn 8733 finSupp cfsupp 9128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-supp 7978 df-1o 8297 df-en 8734 df-fin 8737 df-fsupp 9129 |
This theorem is referenced by: dprdfadd 19623 frlmsplit2 20980 fmptssfisupp 31019 gsumle 31350 zarcmplem 31831 fsuppssind 40282 lindslinindimp2lem3 45801 lindslinindsimp2lem5 45803 |
Copyright terms: Public domain | W3C validator |