MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppres Structured version   Visualization version   GIF version

Theorem fsuppres 9302
Description: The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
fsuppres.s (𝜑𝐹 finSupp 𝑍)
fsuppres.z (𝜑𝑍𝑉)
Assertion
Ref Expression
fsuppres (𝜑 → (𝐹𝑋) finSupp 𝑍)

Proof of Theorem fsuppres
StepHypRef Expression
1 fsuppres.s . . 3 (𝜑𝐹 finSupp 𝑍)
2 fsuppimp 9277 . . . 4 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
3 relprcnfsupp 9273 . . . . . . . . . . . 12 𝐹 ∈ V → ¬ 𝐹 finSupp 𝑍)
43con4i 114 . . . . . . . . . . 11 (𝐹 finSupp 𝑍𝐹 ∈ V)
51, 4syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
6 fsuppres.z . . . . . . . . . 10 (𝜑𝑍𝑉)
75, 6jca 511 . . . . . . . . 9 (𝜑 → (𝐹 ∈ V ∧ 𝑍𝑉))
87adantr 480 . . . . . . . 8 ((𝜑 ∧ Fun 𝐹) → (𝐹 ∈ V ∧ 𝑍𝑉))
9 ressuppss 8123 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝑍𝑉) → ((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍))
10 ssfi 9097 . . . . . . . . 9 (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐹𝑋) supp 𝑍) ∈ Fin)
1110expcom 413 . . . . . . . 8 (((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin))
128, 9, 113syl 18 . . . . . . 7 ((𝜑 ∧ Fun 𝐹) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin))
1312expcom 413 . . . . . 6 (Fun 𝐹 → (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin)))
1413com23 86 . . . . 5 (Fun 𝐹 → ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin)))
1514imp 406 . . . 4 ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin))
162, 15syl 17 . . 3 (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin))
171, 16mpcom 38 . 2 (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin)
18 funres 6528 . . . . 5 (Fun 𝐹 → Fun (𝐹𝑋))
1918adantr 480 . . . 4 ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → Fun (𝐹𝑋))
201, 2, 193syl 18 . . 3 (𝜑 → Fun (𝐹𝑋))
21 resexg 5982 . . . 4 (𝐹 ∈ V → (𝐹𝑋) ∈ V)
221, 4, 213syl 18 . . 3 (𝜑 → (𝐹𝑋) ∈ V)
23 funisfsupp 9276 . . 3 ((Fun (𝐹𝑋) ∧ (𝐹𝑋) ∈ V ∧ 𝑍𝑉) → ((𝐹𝑋) finSupp 𝑍 ↔ ((𝐹𝑋) supp 𝑍) ∈ Fin))
2420, 22, 6, 23syl3anc 1373 . 2 (𝜑 → ((𝐹𝑋) finSupp 𝑍 ↔ ((𝐹𝑋) supp 𝑍) ∈ Fin))
2517, 24mpbird 257 1 (𝜑 → (𝐹𝑋) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3438  wss 3905   class class class wbr 5095  cres 5625  Fun wfun 6480  (class class class)co 7353   supp csupp 8100  Fincfn 8879   finSupp cfsupp 9270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-supp 8101  df-1o 8395  df-en 8880  df-fin 8883  df-fsupp 9271
This theorem is referenced by:  fmptssfisupp  9303  dprdfadd  19920  gsumle  20043  frlmsplit2  21699  elrspunsn  33385  rprmdvdsprod  33490  zarcmplem  33867  psrbagres  42539  evlselv  42580  fsuppssind  42586  cantnf2  43318  lindslinindimp2lem3  48465  lindslinindsimp2lem5  48467
  Copyright terms: Public domain W3C validator