MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppres Structured version   Visualization version   GIF version

Theorem fsuppres 9391
Description: The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
fsuppres.s (𝜑𝐹 finSupp 𝑍)
fsuppres.z (𝜑𝑍𝑉)
Assertion
Ref Expression
fsuppres (𝜑 → (𝐹𝑋) finSupp 𝑍)

Proof of Theorem fsuppres
StepHypRef Expression
1 fsuppres.s . . 3 (𝜑𝐹 finSupp 𝑍)
2 fsuppimp 9371 . . . 4 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
3 relprcnfsupp 9367 . . . . . . . . . . . 12 𝐹 ∈ V → ¬ 𝐹 finSupp 𝑍)
43con4i 114 . . . . . . . . . . 11 (𝐹 finSupp 𝑍𝐹 ∈ V)
51, 4syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
6 fsuppres.z . . . . . . . . . 10 (𝜑𝑍𝑉)
75, 6jca 511 . . . . . . . . 9 (𝜑 → (𝐹 ∈ V ∧ 𝑍𝑉))
87adantr 480 . . . . . . . 8 ((𝜑 ∧ Fun 𝐹) → (𝐹 ∈ V ∧ 𝑍𝑉))
9 ressuppss 8171 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝑍𝑉) → ((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍))
10 ssfi 9176 . . . . . . . . 9 (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐹𝑋) supp 𝑍) ∈ Fin)
1110expcom 413 . . . . . . . 8 (((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin))
128, 9, 113syl 18 . . . . . . 7 ((𝜑 ∧ Fun 𝐹) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin))
1312expcom 413 . . . . . 6 (Fun 𝐹 → (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin)))
1413com23 86 . . . . 5 (Fun 𝐹 → ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin)))
1514imp 406 . . . 4 ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin))
162, 15syl 17 . . 3 (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin))
171, 16mpcom 38 . 2 (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin)
18 funres 6590 . . . . 5 (Fun 𝐹 → Fun (𝐹𝑋))
1918adantr 480 . . . 4 ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → Fun (𝐹𝑋))
201, 2, 193syl 18 . . 3 (𝜑 → Fun (𝐹𝑋))
21 resexg 6027 . . . 4 (𝐹 ∈ V → (𝐹𝑋) ∈ V)
221, 4, 213syl 18 . . 3 (𝜑 → (𝐹𝑋) ∈ V)
23 funisfsupp 9370 . . 3 ((Fun (𝐹𝑋) ∧ (𝐹𝑋) ∈ V ∧ 𝑍𝑉) → ((𝐹𝑋) finSupp 𝑍 ↔ ((𝐹𝑋) supp 𝑍) ∈ Fin))
2420, 22, 6, 23syl3anc 1370 . 2 (𝜑 → ((𝐹𝑋) finSupp 𝑍 ↔ ((𝐹𝑋) supp 𝑍) ∈ Fin))
2517, 24mpbird 257 1 (𝜑 → (𝐹𝑋) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2105  Vcvv 3473  wss 3948   class class class wbr 5148  cres 5678  Fun wfun 6537  (class class class)co 7412   supp csupp 8149  Fincfn 8942   finSupp cfsupp 9364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-supp 8150  df-1o 8469  df-en 8943  df-fin 8946  df-fsupp 9365
This theorem is referenced by:  fmptssfisupp  9392  dprdfadd  19932  frlmsplit2  21548  gsumle  32513  elrspunsn  32822  zarcmplem  33160  psrbagres  41418  evlselv  41462  fsuppssind  41468  cantnf2  42378  lindslinindimp2lem3  47229  lindslinindsimp2lem5  47231
  Copyright terms: Public domain W3C validator