![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppres | Structured version Visualization version GIF version |
Description: The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.) |
Ref | Expression |
---|---|
fsuppres.s | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
fsuppres.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fsuppres | ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppres.s | . . 3 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
2 | fsuppimp 9438 | . . . 4 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
3 | relprcnfsupp 9434 | . . . . . . . . . . . 12 ⊢ (¬ 𝐹 ∈ V → ¬ 𝐹 finSupp 𝑍) | |
4 | 3 | con4i 114 | . . . . . . . . . . 11 ⊢ (𝐹 finSupp 𝑍 → 𝐹 ∈ V) |
5 | 1, 4 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ V) |
6 | fsuppres.z | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
7 | 5, 6 | jca 511 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉)) |
8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ Fun 𝐹) → (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉)) |
9 | ressuppss 8224 | . . . . . . . 8 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
10 | ssfi 9240 | . . . . . . . . 9 ⊢ (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin) | |
11 | 10 | expcom 413 | . . . . . . . 8 ⊢ (((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
12 | 8, 9, 11 | 3syl 18 | . . . . . . 7 ⊢ ((𝜑 ∧ Fun 𝐹) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
13 | 12 | expcom 413 | . . . . . 6 ⊢ (Fun 𝐹 → (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin))) |
14 | 13 | com23 86 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin))) |
15 | 14 | imp 406 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
16 | 2, 15 | syl 17 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
17 | 1, 16 | mpcom 38 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin) |
18 | funres 6620 | . . . . 5 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝑋)) | |
19 | 18 | adantr 480 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → Fun (𝐹 ↾ 𝑋)) |
20 | 1, 2, 19 | 3syl 18 | . . 3 ⊢ (𝜑 → Fun (𝐹 ↾ 𝑋)) |
21 | resexg 6056 | . . . 4 ⊢ (𝐹 ∈ V → (𝐹 ↾ 𝑋) ∈ V) | |
22 | 1, 4, 21 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑋) ∈ V) |
23 | funisfsupp 9437 | . . 3 ⊢ ((Fun (𝐹 ↾ 𝑋) ∧ (𝐹 ↾ 𝑋) ∈ V ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝑋) finSupp 𝑍 ↔ ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) | |
24 | 20, 22, 6, 23 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝑋) finSupp 𝑍 ↔ ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
25 | 17, 24 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ↾ cres 5702 Fun wfun 6567 (class class class)co 7448 supp csupp 8201 Fincfn 9003 finSupp cfsupp 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-supp 8202 df-1o 8522 df-en 9004 df-fin 9007 df-fsupp 9432 |
This theorem is referenced by: fmptssfisupp 9463 dprdfadd 20064 frlmsplit2 21816 gsumle 33074 elrspunsn 33422 rprmdvdsprod 33527 zarcmplem 33827 psrbagres 42501 evlselv 42542 fsuppssind 42548 cantnf2 43287 lindslinindimp2lem3 48189 lindslinindsimp2lem5 48191 |
Copyright terms: Public domain | W3C validator |