MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppres Structured version   Visualization version   GIF version

Theorem fsuppres 9410
Description: The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
fsuppres.s (𝜑𝐹 finSupp 𝑍)
fsuppres.z (𝜑𝑍𝑉)
Assertion
Ref Expression
fsuppres (𝜑 → (𝐹𝑋) finSupp 𝑍)

Proof of Theorem fsuppres
StepHypRef Expression
1 fsuppres.s . . 3 (𝜑𝐹 finSupp 𝑍)
2 fsuppimp 9385 . . . 4 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
3 relprcnfsupp 9381 . . . . . . . . . . . 12 𝐹 ∈ V → ¬ 𝐹 finSupp 𝑍)
43con4i 114 . . . . . . . . . . 11 (𝐹 finSupp 𝑍𝐹 ∈ V)
51, 4syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
6 fsuppres.z . . . . . . . . . 10 (𝜑𝑍𝑉)
75, 6jca 511 . . . . . . . . 9 (𝜑 → (𝐹 ∈ V ∧ 𝑍𝑉))
87adantr 480 . . . . . . . 8 ((𝜑 ∧ Fun 𝐹) → (𝐹 ∈ V ∧ 𝑍𝑉))
9 ressuppss 8187 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝑍𝑉) → ((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍))
10 ssfi 9192 . . . . . . . . 9 (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐹𝑋) supp 𝑍) ∈ Fin)
1110expcom 413 . . . . . . . 8 (((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin))
128, 9, 113syl 18 . . . . . . 7 ((𝜑 ∧ Fun 𝐹) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin))
1312expcom 413 . . . . . 6 (Fun 𝐹 → (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin)))
1413com23 86 . . . . 5 (Fun 𝐹 → ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin)))
1514imp 406 . . . 4 ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin))
162, 15syl 17 . . 3 (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin))
171, 16mpcom 38 . 2 (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin)
18 funres 6583 . . . . 5 (Fun 𝐹 → Fun (𝐹𝑋))
1918adantr 480 . . . 4 ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → Fun (𝐹𝑋))
201, 2, 193syl 18 . . 3 (𝜑 → Fun (𝐹𝑋))
21 resexg 6019 . . . 4 (𝐹 ∈ V → (𝐹𝑋) ∈ V)
221, 4, 213syl 18 . . 3 (𝜑 → (𝐹𝑋) ∈ V)
23 funisfsupp 9384 . . 3 ((Fun (𝐹𝑋) ∧ (𝐹𝑋) ∈ V ∧ 𝑍𝑉) → ((𝐹𝑋) finSupp 𝑍 ↔ ((𝐹𝑋) supp 𝑍) ∈ Fin))
2420, 22, 6, 23syl3anc 1373 . 2 (𝜑 → ((𝐹𝑋) finSupp 𝑍 ↔ ((𝐹𝑋) supp 𝑍) ∈ Fin))
2517, 24mpbird 257 1 (𝜑 → (𝐹𝑋) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3464  wss 3931   class class class wbr 5124  cres 5661  Fun wfun 6530  (class class class)co 7410   supp csupp 8164  Fincfn 8964   finSupp cfsupp 9378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-supp 8165  df-1o 8485  df-en 8965  df-fin 8968  df-fsupp 9379
This theorem is referenced by:  fmptssfisupp  9411  dprdfadd  20008  frlmsplit2  21738  gsumle  33097  elrspunsn  33449  rprmdvdsprod  33554  zarcmplem  33917  psrbagres  42544  evlselv  42585  fsuppssind  42591  cantnf2  43324  lindslinindimp2lem3  48416  lindslinindsimp2lem5  48418
  Copyright terms: Public domain W3C validator