| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppres | Structured version Visualization version GIF version | ||
| Description: The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| fsuppres.s | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| fsuppres.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fsuppres | ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppres.s | . . 3 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 2 | fsuppimp 9247 | . . . 4 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 3 | relprcnfsupp 9243 | . . . . . . . . . . . 12 ⊢ (¬ 𝐹 ∈ V → ¬ 𝐹 finSupp 𝑍) | |
| 4 | 3 | con4i 114 | . . . . . . . . . . 11 ⊢ (𝐹 finSupp 𝑍 → 𝐹 ∈ V) |
| 5 | 1, 4 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ V) |
| 6 | fsuppres.z | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 7 | 5, 6 | jca 511 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉)) |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ Fun 𝐹) → (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉)) |
| 9 | ressuppss 8108 | . . . . . . . 8 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
| 10 | ssfi 9077 | . . . . . . . . 9 ⊢ (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin) | |
| 11 | 10 | expcom 413 | . . . . . . . 8 ⊢ (((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
| 12 | 8, 9, 11 | 3syl 18 | . . . . . . 7 ⊢ ((𝜑 ∧ Fun 𝐹) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
| 13 | 12 | expcom 413 | . . . . . 6 ⊢ (Fun 𝐹 → (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin))) |
| 14 | 13 | com23 86 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin))) |
| 15 | 14 | imp 406 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
| 16 | 2, 15 | syl 17 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
| 17 | 1, 16 | mpcom 38 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin) |
| 18 | funres 6518 | . . . . 5 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝑋)) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → Fun (𝐹 ↾ 𝑋)) |
| 20 | 1, 2, 19 | 3syl 18 | . . 3 ⊢ (𝜑 → Fun (𝐹 ↾ 𝑋)) |
| 21 | resexg 5971 | . . . 4 ⊢ (𝐹 ∈ V → (𝐹 ↾ 𝑋) ∈ V) | |
| 22 | 1, 4, 21 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑋) ∈ V) |
| 23 | funisfsupp 9246 | . . 3 ⊢ ((Fun (𝐹 ↾ 𝑋) ∧ (𝐹 ↾ 𝑋) ∈ V ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝑋) finSupp 𝑍 ↔ ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) | |
| 24 | 20, 22, 6, 23 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝑋) finSupp 𝑍 ↔ ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
| 25 | 17, 24 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5086 ↾ cres 5613 Fun wfun 6470 (class class class)co 7341 supp csupp 8085 Fincfn 8864 finSupp cfsupp 9240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-supp 8086 df-1o 8380 df-en 8865 df-fin 8868 df-fsupp 9241 |
| This theorem is referenced by: fmptssfisupp 9273 dprdfadd 19929 gsumle 20052 frlmsplit2 21705 elrspunsn 33386 rprmdvdsprod 33491 zarcmplem 33886 psrbagres 42579 evlselv 42620 fsuppssind 42626 cantnf2 43358 lindslinindimp2lem3 48492 lindslinindsimp2lem5 48494 |
| Copyright terms: Public domain | W3C validator |