Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsuppres | Structured version Visualization version GIF version |
Description: The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.) |
Ref | Expression |
---|---|
fsuppres.s | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
fsuppres.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fsuppres | ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppres.s | . . 3 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
2 | fsuppimp 9021 | . . . 4 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
3 | relprcnfsupp 9018 | . . . . . . . . . . . 12 ⊢ (¬ 𝐹 ∈ V → ¬ 𝐹 finSupp 𝑍) | |
4 | 3 | con4i 114 | . . . . . . . . . . 11 ⊢ (𝐹 finSupp 𝑍 → 𝐹 ∈ V) |
5 | 1, 4 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ V) |
6 | fsuppres.z | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
7 | 5, 6 | jca 515 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉)) |
8 | 7 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ Fun 𝐹) → (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉)) |
9 | ressuppss 7949 | . . . . . . . 8 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
10 | ssfi 8877 | . . . . . . . . 9 ⊢ (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin) | |
11 | 10 | expcom 417 | . . . . . . . 8 ⊢ (((𝐹 ↾ 𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
12 | 8, 9, 11 | 3syl 18 | . . . . . . 7 ⊢ ((𝜑 ∧ Fun 𝐹) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
13 | 12 | expcom 417 | . . . . . 6 ⊢ (Fun 𝐹 → (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin))) |
14 | 13 | com23 86 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin))) |
15 | 14 | imp 410 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
16 | 2, 15 | syl 17 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
17 | 1, 16 | mpcom 38 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin) |
18 | funres 6443 | . . . . 5 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝑋)) | |
19 | 18 | adantr 484 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → Fun (𝐹 ↾ 𝑋)) |
20 | 1, 2, 19 | 3syl 18 | . . 3 ⊢ (𝜑 → Fun (𝐹 ↾ 𝑋)) |
21 | resexg 5915 | . . . 4 ⊢ (𝐹 ∈ V → (𝐹 ↾ 𝑋) ∈ V) | |
22 | 1, 4, 21 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑋) ∈ V) |
23 | funisfsupp 9020 | . . 3 ⊢ ((Fun (𝐹 ↾ 𝑋) ∧ (𝐹 ↾ 𝑋) ∈ V ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝑋) finSupp 𝑍 ↔ ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) | |
24 | 20, 22, 6, 23 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝑋) finSupp 𝑍 ↔ ((𝐹 ↾ 𝑋) supp 𝑍) ∈ Fin)) |
25 | 17, 24 | mpbird 260 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2112 Vcvv 3423 ⊆ wss 3883 class class class wbr 5070 ↾ cres 5571 Fun wfun 6395 (class class class)co 7235 supp csupp 7927 Fincfn 8650 finSupp cfsupp 9015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pr 5339 ax-un 7545 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-supp 7928 df-1o 8226 df-en 8651 df-fin 8654 df-fsupp 9016 |
This theorem is referenced by: dprdfadd 19440 frlmsplit2 20768 fmptssfisupp 30771 gsumle 31101 zarcmplem 31577 fsuppssind 40041 lindslinindimp2lem3 45520 lindslinindsimp2lem5 45522 |
Copyright terms: Public domain | W3C validator |