Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupres Structured version   Visualization version   GIF version

Theorem limsupres 45720
Description: The superior limit of a restriction is less than or equal to the original superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
limsupres.1 (𝜑𝐹𝑉)
Assertion
Ref Expression
limsupres (𝜑 → (lim sup‘(𝐹𝐶)) ≤ (lim sup‘𝐹))

Proof of Theorem limsupres
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . 3 𝑘𝜑
2 resimass 45246 . . . . . . . 8 ((𝐹𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞))
32a1i 11 . . . . . . 7 (𝑘 ∈ ℝ → ((𝐹𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞)))
43ssrind 4244 . . . . . 6 (𝑘 ∈ ℝ → (((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
54adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℝ) → (((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
6 inss2 4238 . . . . . 6 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
76a1i 11 . . . . 5 ((𝜑𝑘 ∈ ℝ) → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
85, 7sstrd 3994 . . . 4 ((𝜑𝑘 ∈ ℝ) → (((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
98supxrcld 45112 . . 3 ((𝜑𝑘 ∈ ℝ) → sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
107supxrcld 45112 . . 3 ((𝜑𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
11 supxrss 13374 . . . 4 (((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
125, 7, 11syl2anc 584 . . 3 ((𝜑𝑘 ∈ ℝ) → sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
131, 9, 10, 12infrnmptle 45434 . 2 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
14 limsupres.1 . . . . 5 (𝜑𝐹𝑉)
1514resexd 6046 . . . 4 (𝜑 → (𝐹𝐶) ∈ V)
16 eqid 2737 . . . . 5 (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
1716limsupval 15510 . . . 4 ((𝐹𝐶) ∈ V → (lim sup‘(𝐹𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
1815, 17syl 17 . . 3 (𝜑 → (lim sup‘(𝐹𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
19 eqid 2737 . . . . 5 (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
2019limsupval 15510 . . . 4 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
2114, 20syl 17 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
2218, 21breq12d 5156 . 2 (𝜑 → ((lim sup‘(𝐹𝐶)) ≤ (lim sup‘𝐹) ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
2313, 22mpbird 257 1 (𝜑 → (lim sup‘(𝐹𝐶)) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951   class class class wbr 5143  cmpt 5225  ran crn 5686  cres 5687  cima 5688  cfv 6561  (class class class)co 7431  supcsup 9480  infcinf 9481  cr 11154  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  [,)cico 13389  lim supclsp 15506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-limsup 15507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator