Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupres | Structured version Visualization version GIF version |
Description: The superior limit of a restriction is less than or equal to the original superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupres.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
Ref | Expression |
---|---|
limsupres | ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐶)) ≤ (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | resimass 42244 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞)) | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → ((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞))) |
4 | 3 | ssrind 4140 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → (((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
5 | 4 | adantl 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
6 | inss2 4134 | . . . . . 6 ⊢ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
8 | 5, 7 | sstrd 3902 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
9 | 8 | supxrcld 42116 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
10 | 7 | supxrcld 42116 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
11 | supxrss 12766 | . . . 4 ⊢ (((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
12 | 5, 7, 11 | syl2anc 587 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
13 | 1, 9, 10, 12 | infrnmptle 42426 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
14 | limsupres.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
15 | 14 | resexd 5870 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ V) |
16 | eqid 2758 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
17 | 16 | limsupval 14879 | . . . 4 ⊢ ((𝐹 ↾ 𝐶) ∈ V → (lim sup‘(𝐹 ↾ 𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
18 | 15, 17 | syl 17 | . . 3 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
19 | eqid 2758 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
20 | 19 | limsupval 14879 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
21 | 14, 20 | syl 17 | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
22 | 18, 21 | breq12d 5045 | . 2 ⊢ (𝜑 → ((lim sup‘(𝐹 ↾ 𝐶)) ≤ (lim sup‘𝐹) ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))) |
23 | 13, 22 | mpbird 260 | 1 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐶)) ≤ (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∩ cin 3857 ⊆ wss 3858 class class class wbr 5032 ↦ cmpt 5112 ran crn 5525 ↾ cres 5526 “ cima 5527 ‘cfv 6335 (class class class)co 7150 supcsup 8937 infcinf 8938 ℝcr 10574 +∞cpnf 10710 ℝ*cxr 10712 < clt 10713 ≤ cle 10714 [,)cico 12781 lim supclsp 14875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-limsup 14876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |