Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupres Structured version   Visualization version   GIF version

Theorem limsupres 42713
Description: The superior limit of a restriction is less than or equal to the original superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
limsupres.1 (𝜑𝐹𝑉)
Assertion
Ref Expression
limsupres (𝜑 → (lim sup‘(𝐹𝐶)) ≤ (lim sup‘𝐹))

Proof of Theorem limsupres
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . 3 𝑘𝜑
2 resimass 42244 . . . . . . . 8 ((𝐹𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞))
32a1i 11 . . . . . . 7 (𝑘 ∈ ℝ → ((𝐹𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞)))
43ssrind 4140 . . . . . 6 (𝑘 ∈ ℝ → (((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
54adantl 485 . . . . 5 ((𝜑𝑘 ∈ ℝ) → (((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
6 inss2 4134 . . . . . 6 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
76a1i 11 . . . . 5 ((𝜑𝑘 ∈ ℝ) → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
85, 7sstrd 3902 . . . 4 ((𝜑𝑘 ∈ ℝ) → (((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
98supxrcld 42116 . . 3 ((𝜑𝑘 ∈ ℝ) → sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
107supxrcld 42116 . . 3 ((𝜑𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
11 supxrss 12766 . . . 4 (((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
125, 7, 11syl2anc 587 . . 3 ((𝜑𝑘 ∈ ℝ) → sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
131, 9, 10, 12infrnmptle 42426 . 2 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
14 limsupres.1 . . . . 5 (𝜑𝐹𝑉)
1514resexd 5870 . . . 4 (𝜑 → (𝐹𝐶) ∈ V)
16 eqid 2758 . . . . 5 (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
1716limsupval 14879 . . . 4 ((𝐹𝐶) ∈ V → (lim sup‘(𝐹𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
1815, 17syl 17 . . 3 (𝜑 → (lim sup‘(𝐹𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
19 eqid 2758 . . . . 5 (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
2019limsupval 14879 . . . 4 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
2114, 20syl 17 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
2218, 21breq12d 5045 . 2 (𝜑 → ((lim sup‘(𝐹𝐶)) ≤ (lim sup‘𝐹) ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
2313, 22mpbird 260 1 (𝜑 → (lim sup‘(𝐹𝐶)) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3409  cin 3857  wss 3858   class class class wbr 5032  cmpt 5112  ran crn 5525  cres 5526  cima 5527  cfv 6335  (class class class)co 7150  supcsup 8937  infcinf 8938  cr 10574  +∞cpnf 10710  *cxr 10712   < clt 10713  cle 10714  [,)cico 12781  lim supclsp 14875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-inf 8940  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-limsup 14876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator