| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupres | Structured version Visualization version GIF version | ||
| Description: The superior limit of a restriction is less than or equal to the original superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupres.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| limsupres | ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐶)) ≤ (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | resimass 45277 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞)) | |
| 3 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → ((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞))) |
| 4 | 3 | ssrind 4189 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → (((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
| 6 | inss2 4183 | . . . . . 6 ⊢ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
| 8 | 5, 7 | sstrd 3940 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
| 9 | 8 | supxrcld 45144 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
| 10 | 7 | supxrcld 45144 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
| 11 | supxrss 13226 | . . . 4 ⊢ (((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 12 | 5, 7, 11 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 13 | 1, 9, 10, 12 | infrnmptle 45461 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
| 14 | limsupres.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 15 | 14 | resexd 5972 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ V) |
| 16 | eqid 2731 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 17 | 16 | limsupval 15376 | . . . 4 ⊢ ((𝐹 ↾ 𝐶) ∈ V → (lim sup‘(𝐹 ↾ 𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
| 18 | 15, 17 | syl 17 | . . 3 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
| 19 | eqid 2731 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 20 | 19 | limsupval 15376 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
| 21 | 14, 20 | syl 17 | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
| 22 | 18, 21 | breq12d 5099 | . 2 ⊢ (𝜑 → ((lim sup‘(𝐹 ↾ 𝐶)) ≤ (lim sup‘𝐹) ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))) |
| 23 | 13, 22 | mpbird 257 | 1 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐶)) ≤ (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 ran crn 5612 ↾ cres 5613 “ cima 5614 ‘cfv 6476 (class class class)co 7341 supcsup 9319 infcinf 9320 ℝcr 11000 +∞cpnf 11138 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 [,)cico 13242 lim supclsp 15372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-limsup 15373 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |