![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupres | Structured version Visualization version GIF version |
Description: The superior limit of a restriction is less than or equal to the original superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupres.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
Ref | Expression |
---|---|
limsupres | ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐶)) ≤ (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | resimass 45148 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞)) | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → ((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞))) |
4 | 3 | ssrind 4265 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → (((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
6 | inss2 4259 | . . . . . 6 ⊢ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
8 | 5, 7 | sstrd 4019 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
9 | 8 | supxrcld 45009 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
10 | 7 | supxrcld 45009 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
11 | supxrss 13394 | . . . 4 ⊢ (((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
12 | 5, 7, 11 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
13 | 1, 9, 10, 12 | infrnmptle 45338 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
14 | limsupres.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
15 | 14 | resexd 6057 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ V) |
16 | eqid 2740 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
17 | 16 | limsupval 15520 | . . . 4 ⊢ ((𝐹 ↾ 𝐶) ∈ V → (lim sup‘(𝐹 ↾ 𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
18 | 15, 17 | syl 17 | . . 3 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
19 | eqid 2740 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
20 | 19 | limsupval 15520 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
21 | 14, 20 | syl 17 | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
22 | 18, 21 | breq12d 5179 | . 2 ⊢ (𝜑 → ((lim sup‘(𝐹 ↾ 𝐶)) ≤ (lim sup‘𝐹) ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ 𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))) |
23 | 13, 22 | mpbird 257 | 1 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐶)) ≤ (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 ↾ cres 5702 “ cima 5703 ‘cfv 6573 (class class class)co 7448 supcsup 9509 infcinf 9510 ℝcr 11183 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 [,)cico 13409 lim supclsp 15516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-limsup 15517 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |