Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupres Structured version   Visualization version   GIF version

Theorem limsupres 44721
Description: The superior limit of a restriction is less than or equal to the original superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
limsupres.1 (𝜑𝐹𝑉)
Assertion
Ref Expression
limsupres (𝜑 → (lim sup‘(𝐹𝐶)) ≤ (lim sup‘𝐹))

Proof of Theorem limsupres
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1916 . . 3 𝑘𝜑
2 resimass 44243 . . . . . . . 8 ((𝐹𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞))
32a1i 11 . . . . . . 7 (𝑘 ∈ ℝ → ((𝐹𝐶) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞)))
43ssrind 4236 . . . . . 6 (𝑘 ∈ ℝ → (((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
54adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℝ) → (((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
6 inss2 4230 . . . . . 6 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
76a1i 11 . . . . 5 ((𝜑𝑘 ∈ ℝ) → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
85, 7sstrd 3993 . . . 4 ((𝜑𝑘 ∈ ℝ) → (((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
98supxrcld 44099 . . 3 ((𝜑𝑘 ∈ ℝ) → sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
107supxrcld 44099 . . 3 ((𝜑𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
11 supxrss 13316 . . . 4 (((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
125, 7, 11syl2anc 583 . . 3 ((𝜑𝑘 ∈ ℝ) → sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
131, 9, 10, 12infrnmptle 44433 . 2 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
14 limsupres.1 . . . . 5 (𝜑𝐹𝑉)
1514resexd 6029 . . . 4 (𝜑 → (𝐹𝐶) ∈ V)
16 eqid 2731 . . . . 5 (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
1716limsupval 15423 . . . 4 ((𝐹𝐶) ∈ V → (lim sup‘(𝐹𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
1815, 17syl 17 . . 3 (𝜑 → (lim sup‘(𝐹𝐶)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
19 eqid 2731 . . . . 5 (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
2019limsupval 15423 . . . 4 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
2114, 20syl 17 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
2218, 21breq12d 5162 . 2 (𝜑 → ((lim sup‘(𝐹𝐶)) ≤ (lim sup‘𝐹) ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐶) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
2313, 22mpbird 256 1 (𝜑 → (lim sup‘(𝐹𝐶)) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cin 3948  wss 3949   class class class wbr 5149  cmpt 5232  ran crn 5678  cres 5679  cima 5680  cfv 6544  (class class class)co 7412  supcsup 9438  infcinf 9439  cr 11112  +∞cpnf 11250  *cxr 11252   < clt 11253  cle 11254  [,)cico 13331  lim supclsp 15419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-inf 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-limsup 15420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator