Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfresxr Structured version   Visualization version   GIF version

Theorem liminfresxr 43308
Description: The inferior limit of a function only depends on the preimage of the extended real part. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfresxr.1 (𝜑𝐹𝑉)
liminfresxr.2 (𝜑 → Fun 𝐹)
liminfresxr.3 𝐴 = (𝐹 “ ℝ*)
Assertion
Ref Expression
liminfresxr (𝜑 → (lim inf‘(𝐹𝐴)) = (lim inf‘𝐹))

Proof of Theorem liminfresxr
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resimass 42784 . . . . . . . . 9 ((𝐹𝐴) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞))
21a1i 11 . . . . . . . 8 (𝜑 → ((𝐹𝐴) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞)))
32ssrind 4169 . . . . . . 7 (𝜑 → (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
4 liminfresxr.2 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
54funfnd 6465 . . . . . . . . . . . 12 (𝜑𝐹 Fn dom 𝐹)
6 elinel1 4129 . . . . . . . . . . . 12 (𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑦 ∈ (𝐹 “ (𝑘[,)+∞)))
7 fvelima2 42806 . . . . . . . . . . . 12 ((𝐹 Fn dom 𝐹𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦)
85, 6, 7syl2an 596 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦)
9 elinel1 4129 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) → 𝑥 ∈ dom 𝐹)
1093ad2ant2 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom 𝐹)
11 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
12 elinel2 4130 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑦 ∈ ℝ*)
1312adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ ℝ*)
1411, 13eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ ℝ*)
15143adant2 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ ℝ*)
1610, 15jca 512 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*))
17163adant1l 1175 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*))
18 simp1l 1196 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝜑)
19 elpreima 6935 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
205, 19syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
2118, 20syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
2217, 21mpbird 256 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝐹 “ ℝ*))
23 liminfresxr.3 . . . . . . . . . . . . . . . . 17 𝐴 = (𝐹 “ ℝ*)
2422, 23eleqtrrdi 2850 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥𝐴)
25243expa 1117 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥𝐴)
2625fvresd 6794 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
27 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
2826, 27eqtr2d 2779 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑦 = ((𝐹𝐴)‘𝑥))
29 simplll 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝜑)
304funresd 6477 . . . . . . . . . . . . . . . 16 (𝜑 → Fun (𝐹𝐴))
3129, 30syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → Fun (𝐹𝐴))
329ad2antlr 724 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom 𝐹)
3325, 32elind 4128 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝐴 ∩ dom 𝐹))
34 dmres 5913 . . . . . . . . . . . . . . . 16 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
3533, 34eleqtrrdi 2850 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom (𝐹𝐴))
3631, 35jca 512 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → (Fun (𝐹𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)))
37 elinel2 4130 . . . . . . . . . . . . . . 15 (𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) → 𝑥 ∈ (𝑘[,)+∞))
3837ad2antlr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝑘[,)+∞))
39 funfvima 7106 . . . . . . . . . . . . . 14 ((Fun (𝐹𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) → (𝑥 ∈ (𝑘[,)+∞) → ((𝐹𝐴)‘𝑥) ∈ ((𝐹𝐴) “ (𝑘[,)+∞))))
4036, 38, 39sylc 65 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝐴)‘𝑥) ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4128, 40eqeltrd 2839 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4241rexlimdva2 3216 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞))))
438, 42mpd 15 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4443ralrimiva 3103 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
45 dfss3 3909 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹𝐴) “ (𝑘[,)+∞)) ↔ ∀𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4644, 45sylibr 233 . . . . . . . 8 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹𝐴) “ (𝑘[,)+∞)))
47 inss2 4163 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
4847a1i 11 . . . . . . . 8 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
4946, 48ssind 4166 . . . . . . 7 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*))
503, 49eqssd 3938 . . . . . 6 (𝜑 → (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
5150infeq1d 9236 . . . . 5 (𝜑 → inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5251mpteq2dv 5176 . . . 4 (𝜑 → (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
5352rneqd 5847 . . 3 (𝜑 → ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
5453supeq1d 9205 . 2 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
55 liminfresxr.1 . . . 4 (𝜑𝐹𝑉)
5655resexd 5938 . . 3 (𝜑 → (𝐹𝐴) ∈ V)
57 eqid 2738 . . . 4 (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5857liminfval 43300 . . 3 ((𝐹𝐴) ∈ V → (lim inf‘(𝐹𝐴)) = sup(ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
5956, 58syl 17 . 2 (𝜑 → (lim inf‘(𝐹𝐴)) = sup(ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
60 eqid 2738 . . . 4 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
6160liminfval 43300 . . 3 (𝐹𝑉 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
6255, 61syl 17 . 2 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
6354, 59, 623eqtr4d 2788 1 (𝜑 → (lim inf‘(𝐹𝐴)) = (lim inf‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  cmpt 5157  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427   Fn wfn 6428  cfv 6433  (class class class)co 7275  supcsup 9199  infcinf 9200  cr 10870  +∞cpnf 11006  *cxr 11008   < clt 11009  [,)cico 13081  lim infclsi 43292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-liminf 43293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator