Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfresxr Structured version   Visualization version   GIF version

Theorem liminfresxr 42129
Description: The inferior limit of a function only depends on the preimage of the extended real part. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfresxr.1 (𝜑𝐹𝑉)
liminfresxr.2 (𝜑 → Fun 𝐹)
liminfresxr.3 𝐴 = (𝐹 “ ℝ*)
Assertion
Ref Expression
liminfresxr (𝜑 → (lim inf‘(𝐹𝐴)) = (lim inf‘𝐹))

Proof of Theorem liminfresxr
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resimass 41591 . . . . . . . . 9 ((𝐹𝐴) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞))
21a1i 11 . . . . . . . 8 (𝜑 → ((𝐹𝐴) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞)))
32ssrind 4205 . . . . . . 7 (𝜑 → (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
4 liminfresxr.2 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
54funfnd 6379 . . . . . . . . . . . 12 (𝜑𝐹 Fn dom 𝐹)
6 elinel1 4165 . . . . . . . . . . . 12 (𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑦 ∈ (𝐹 “ (𝑘[,)+∞)))
7 fvelima2 41613 . . . . . . . . . . . 12 ((𝐹 Fn dom 𝐹𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦)
85, 6, 7syl2an 597 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦)
9 elinel1 4165 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) → 𝑥 ∈ dom 𝐹)
1093ad2ant2 1129 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom 𝐹)
11 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
12 elinel2 4166 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑦 ∈ ℝ*)
1312adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ ℝ*)
1411, 13eqeltrd 2912 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ ℝ*)
15143adant2 1126 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ ℝ*)
1610, 15jca 514 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*))
17163adant1l 1171 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*))
18 simp1l 1192 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝜑)
19 elpreima 6821 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
205, 19syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
2118, 20syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
2217, 21mpbird 259 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝐹 “ ℝ*))
23 liminfresxr.3 . . . . . . . . . . . . . . . . 17 𝐴 = (𝐹 “ ℝ*)
2422, 23eleqtrrdi 2923 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥𝐴)
25243expa 1113 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥𝐴)
2625fvresd 6683 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
27 simpr 487 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
2826, 27eqtr2d 2856 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑦 = ((𝐹𝐴)‘𝑥))
29 simplll 773 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝜑)
304funresd 41614 . . . . . . . . . . . . . . . 16 (𝜑 → Fun (𝐹𝐴))
3129, 30syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → Fun (𝐹𝐴))
329ad2antlr 725 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom 𝐹)
3325, 32elind 4164 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝐴 ∩ dom 𝐹))
34 dmres 5868 . . . . . . . . . . . . . . . 16 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
3533, 34eleqtrrdi 2923 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom (𝐹𝐴))
3631, 35jca 514 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → (Fun (𝐹𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)))
37 elinel2 4166 . . . . . . . . . . . . . . 15 (𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) → 𝑥 ∈ (𝑘[,)+∞))
3837ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝑘[,)+∞))
39 funfvima 6985 . . . . . . . . . . . . . 14 ((Fun (𝐹𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) → (𝑥 ∈ (𝑘[,)+∞) → ((𝐹𝐴)‘𝑥) ∈ ((𝐹𝐴) “ (𝑘[,)+∞))))
4036, 38, 39sylc 65 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝐴)‘𝑥) ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4128, 40eqeltrd 2912 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4241rexlimdva2 3286 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞))))
438, 42mpd 15 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4443ralrimiva 3181 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
45 dfss3 3949 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹𝐴) “ (𝑘[,)+∞)) ↔ ∀𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4644, 45sylibr 236 . . . . . . . 8 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹𝐴) “ (𝑘[,)+∞)))
47 inss2 4199 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
4847a1i 11 . . . . . . . 8 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
4946, 48ssind 4202 . . . . . . 7 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*))
503, 49eqssd 3977 . . . . . 6 (𝜑 → (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
5150infeq1d 8934 . . . . 5 (𝜑 → inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5251mpteq2dv 5155 . . . 4 (𝜑 → (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
5352rneqd 5801 . . 3 (𝜑 → ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
5453supeq1d 8903 . 2 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
55 liminfresxr.1 . . . 4 (𝜑𝐹𝑉)
5655resexd 41484 . . 3 (𝜑 → (𝐹𝐴) ∈ V)
57 eqid 2820 . . . 4 (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5857liminfval 42121 . . 3 ((𝐹𝐴) ∈ V → (lim inf‘(𝐹𝐴)) = sup(ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
5956, 58syl 17 . 2 (𝜑 → (lim inf‘(𝐹𝐴)) = sup(ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
60 eqid 2820 . . . 4 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
6160liminfval 42121 . . 3 (𝐹𝑉 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
6255, 61syl 17 . 2 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
6354, 59, 623eqtr4d 2865 1 (𝜑 → (lim inf‘(𝐹𝐴)) = (lim inf‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  wral 3137  wrex 3138  Vcvv 3491  cin 3928  wss 3929  cmpt 5139  ccnv 5547  dom cdm 5548  ran crn 5549  cres 5550  cima 5551  Fun wfun 6342   Fn wfn 6343  cfv 6348  (class class class)co 7149  supcsup 8897  infcinf 8898  cr 10529  +∞cpnf 10665  *cxr 10667   < clt 10668  [,)cico 12734  lim infclsi 42113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-pre-lttri 10604  ax-pre-lttrn 10605
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-sup 8899  df-inf 8900  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-liminf 42114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator