Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmptf | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fmptf.1 | ⊢ Ⅎ𝑥𝐵 |
fmptf.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Ref | Expression |
---|---|
fmptf | ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1920 | . . 3 ⊢ Ⅎ𝑦 𝐶 ∈ 𝐵 | |
2 | nfcsb1v 3861 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
3 | fmptf.1 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfel 2922 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵 |
5 | csbeq1a 3850 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
6 | 5 | eleq1d 2824 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐶 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵)) |
7 | 1, 4, 6 | cbvralw 3371 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵) |
8 | fmptf.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
9 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
10 | 9, 2, 5 | cbvmpt 5189 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
11 | 8, 10 | eqtri 2767 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
12 | 11 | fmpt 6978 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
13 | 7, 12 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2109 Ⅎwnfc 2888 ∀wral 3065 ⦋csb 3836 ↦ cmpt 5161 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 |
This theorem is referenced by: rnmptssf 42746 |
Copyright terms: Public domain | W3C validator |