Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptf Structured version   Visualization version   GIF version

Theorem fmptf 45233
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fmptf.1 𝑥𝐵
fmptf.2 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmptf (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . 3 𝑦 𝐶𝐵
2 nfcsb1v 3886 . . . 4 𝑥𝑦 / 𝑥𝐶
3 fmptf.1 . . . 4 𝑥𝐵
42, 3nfel 2906 . . 3 𝑥𝑦 / 𝑥𝐶𝐵
5 csbeq1a 3876 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
65eleq1d 2813 . . 3 (𝑥 = 𝑦 → (𝐶𝐵𝑦 / 𝑥𝐶𝐵))
71, 4, 6cbvralw 3280 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵)
8 fmptf.2 . . . 4 𝐹 = (𝑥𝐴𝐶)
9 nfcv 2891 . . . . 5 𝑦𝐶
109, 2, 5cbvmpt 5209 . . . 4 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
118, 10eqtri 2752 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐶)
1211fmpt 7082 . 2 (∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵𝐹:𝐴𝐵)
137, 12bitri 275 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  csb 3862  cmpt 5188  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  rnmptssf  45241
  Copyright terms: Public domain W3C validator