Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptf Structured version   Visualization version   GIF version

Theorem fmptf 45212
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fmptf.1 𝑥𝐵
fmptf.2 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmptf (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . 3 𝑦 𝐶𝐵
2 nfcsb1v 3936 . . . 4 𝑥𝑦 / 𝑥𝐶
3 fmptf.1 . . . 4 𝑥𝐵
42, 3nfel 2920 . . 3 𝑥𝑦 / 𝑥𝐶𝐵
5 csbeq1a 3925 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
65eleq1d 2826 . . 3 (𝑥 = 𝑦 → (𝐶𝐵𝑦 / 𝑥𝐶𝐵))
71, 4, 6cbvralw 3306 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵)
8 fmptf.2 . . . 4 𝐹 = (𝑥𝐴𝐶)
9 nfcv 2905 . . . . 5 𝑦𝐶
109, 2, 5cbvmpt 5262 . . . 4 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
118, 10eqtri 2765 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐶)
1211fmpt 7137 . 2 (∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵𝐹:𝐴𝐵)
137, 12bitri 275 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2108  wnfc 2890  wral 3061  csb 3911  cmpt 5234  wf 6565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-fun 6571  df-fn 6572  df-f 6573
This theorem is referenced by:  rnmptssf  45221
  Copyright terms: Public domain W3C validator