Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptf Structured version   Visualization version   GIF version

Theorem fmptf 42736
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fmptf.1 𝑥𝐵
fmptf.2 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmptf (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1920 . . 3 𝑦 𝐶𝐵
2 nfcsb1v 3861 . . . 4 𝑥𝑦 / 𝑥𝐶
3 fmptf.1 . . . 4 𝑥𝐵
42, 3nfel 2922 . . 3 𝑥𝑦 / 𝑥𝐶𝐵
5 csbeq1a 3850 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
65eleq1d 2824 . . 3 (𝑥 = 𝑦 → (𝐶𝐵𝑦 / 𝑥𝐶𝐵))
71, 4, 6cbvralw 3371 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵)
8 fmptf.2 . . . 4 𝐹 = (𝑥𝐴𝐶)
9 nfcv 2908 . . . . 5 𝑦𝐶
109, 2, 5cbvmpt 5189 . . . 4 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
118, 10eqtri 2767 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐶)
1211fmpt 6978 . 2 (∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵𝐹:𝐴𝐵)
137, 12bitri 274 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2109  wnfc 2888  wral 3065  csb 3836  cmpt 5161  wf 6426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-fun 6432  df-fn 6433  df-f 6434
This theorem is referenced by:  rnmptssf  42746
  Copyright terms: Public domain W3C validator