Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupresxr Structured version   Visualization version   GIF version

Theorem limsupresxr 44482
Description: The superior limit of a function only depends on the restriction of that function to the preimage of the set of extended reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupresxr.1 (𝜑𝐹𝑉)
limsupresxr.2 (𝜑 → Fun 𝐹)
limsupresxr.3 𝐴 = (𝐹 “ ℝ*)
Assertion
Ref Expression
limsupresxr (𝜑 → (lim sup‘(𝐹𝐴)) = (lim sup‘𝐹))

Proof of Theorem limsupresxr
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resimass 43943 . . . . . . . . 9 ((𝐹𝐴) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞))
21a1i 11 . . . . . . . 8 (𝜑 → ((𝐹𝐴) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞)))
32ssrind 4236 . . . . . . 7 (𝜑 → (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
4 limsupresxr.2 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
54funfnd 6580 . . . . . . . . . . . 12 (𝜑𝐹 Fn dom 𝐹)
6 elinel1 4196 . . . . . . . . . . . 12 (𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑦 ∈ (𝐹 “ (𝑘[,)+∞)))
7 fvelima2 43964 . . . . . . . . . . . 12 ((𝐹 Fn dom 𝐹𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦)
85, 6, 7syl2an 597 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦)
9 elinel1 4196 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) → 𝑥 ∈ dom 𝐹)
1093ad2ant2 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom 𝐹)
11 simpr 486 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
12 elinel2 4197 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑦 ∈ ℝ*)
1312adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ ℝ*)
1411, 13eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ ℝ*)
15143adant2 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ ℝ*)
1610, 15jca 513 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*))
17163adant1l 1177 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*))
18 simp1l 1198 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝜑)
19 elpreima 7060 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
205, 19syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
2118, 20syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
2217, 21mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝐹 “ ℝ*))
23 limsupresxr.3 . . . . . . . . . . . . . . . . 17 𝐴 = (𝐹 “ ℝ*)
2422, 23eleqtrrdi 2845 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥𝐴)
25243expa 1119 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥𝐴)
2625fvresd 6912 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
27 simpr 486 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
2826, 27eqtr2d 2774 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑦 = ((𝐹𝐴)‘𝑥))
29 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝜑)
304funresd 6592 . . . . . . . . . . . . . . . 16 (𝜑 → Fun (𝐹𝐴))
3129, 30syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → Fun (𝐹𝐴))
329ad2antlr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom 𝐹)
3325, 32elind 4195 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝐴 ∩ dom 𝐹))
34 dmres 6004 . . . . . . . . . . . . . . . 16 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
3533, 34eleqtrrdi 2845 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom (𝐹𝐴))
3631, 35jca 513 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → (Fun (𝐹𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)))
37 elinel2 4197 . . . . . . . . . . . . . . 15 (𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) → 𝑥 ∈ (𝑘[,)+∞))
3837ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝑘[,)+∞))
39 funfvima 7232 . . . . . . . . . . . . . 14 ((Fun (𝐹𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) → (𝑥 ∈ (𝑘[,)+∞) → ((𝐹𝐴)‘𝑥) ∈ ((𝐹𝐴) “ (𝑘[,)+∞))))
4036, 38, 39sylc 65 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝐴)‘𝑥) ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4128, 40eqeltrd 2834 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4241rexlimdva2 3158 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞))))
438, 42mpd 15 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4443ralrimiva 3147 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
45 dfss3 3971 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹𝐴) “ (𝑘[,)+∞)) ↔ ∀𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4644, 45sylibr 233 . . . . . . . 8 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹𝐴) “ (𝑘[,)+∞)))
47 inss2 4230 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
4847a1i 11 . . . . . . . 8 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
4946, 48ssind 4233 . . . . . . 7 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*))
503, 49eqssd 4000 . . . . . 6 (𝜑 → (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
5150supeq1d 9441 . . . . 5 (𝜑 → sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5251mpteq2dv 5251 . . . 4 (𝜑 → (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
5352rneqd 5938 . . 3 (𝜑 → ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
5453infeq1d 9472 . 2 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
55 limsupresxr.1 . . . 4 (𝜑𝐹𝑉)
5655resexd 6029 . . 3 (𝜑 → (𝐹𝐴) ∈ V)
57 eqid 2733 . . . 4 (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5857limsupval 15418 . . 3 ((𝐹𝐴) ∈ V → (lim sup‘(𝐹𝐴)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
5956, 58syl 17 . 2 (𝜑 → (lim sup‘(𝐹𝐴)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
60 eqid 2733 . . . 4 (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
6160limsupval 15418 . . 3 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
6255, 61syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
6354, 59, 623eqtr4d 2783 1 (𝜑 → (lim sup‘(𝐹𝐴)) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  cin 3948  wss 3949  cmpt 5232  ccnv 5676  dom cdm 5677  ran crn 5678  cres 5679  cima 5680  Fun wfun 6538   Fn wfn 6539  cfv 6544  (class class class)co 7409  supcsup 9435  infcinf 9436  cr 11109  +∞cpnf 11245  *cxr 11247   < clt 11248  [,)cico 13326  lim supclsp 15414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-limsup 15415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator