Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupresxr Structured version   Visualization version   GIF version

Theorem limsupresxr 45751
Description: The superior limit of a function only depends on the restriction of that function to the preimage of the set of extended reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupresxr.1 (𝜑𝐹𝑉)
limsupresxr.2 (𝜑 → Fun 𝐹)
limsupresxr.3 𝐴 = (𝐹 “ ℝ*)
Assertion
Ref Expression
limsupresxr (𝜑 → (lim sup‘(𝐹𝐴)) = (lim sup‘𝐹))

Proof of Theorem limsupresxr
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resimass 45221 . . . . . . . . 9 ((𝐹𝐴) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞))
21a1i 11 . . . . . . . 8 (𝜑 → ((𝐹𝐴) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞)))
32ssrind 4197 . . . . . . 7 (𝜑 → (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
4 limsupresxr.2 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
54funfnd 6517 . . . . . . . . . . . 12 (𝜑𝐹 Fn dom 𝐹)
6 elinel1 4154 . . . . . . . . . . . 12 (𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑦 ∈ (𝐹 “ (𝑘[,)+∞)))
7 fvelima2 6879 . . . . . . . . . . . 12 ((𝐹 Fn dom 𝐹𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦)
85, 6, 7syl2an 596 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦)
9 elinel1 4154 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) → 𝑥 ∈ dom 𝐹)
1093ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom 𝐹)
11 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
12 elinel2 4155 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑦 ∈ ℝ*)
1312adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ ℝ*)
1411, 13eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ ℝ*)
15143adant2 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ ℝ*)
1610, 15jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*))
17163adant1l 1177 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*))
18 simp1l 1198 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝜑)
19 elpreima 6996 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
205, 19syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
2118, 20syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
2217, 21mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝐹 “ ℝ*))
23 limsupresxr.3 . . . . . . . . . . . . . . . . 17 𝐴 = (𝐹 “ ℝ*)
2422, 23eleqtrrdi 2839 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥𝐴)
25243expa 1118 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥𝐴)
2625fvresd 6846 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
27 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
2826, 27eqtr2d 2765 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑦 = ((𝐹𝐴)‘𝑥))
29 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝜑)
304funresd 6529 . . . . . . . . . . . . . . . 16 (𝜑 → Fun (𝐹𝐴))
3129, 30syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → Fun (𝐹𝐴))
329ad2antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom 𝐹)
3325, 32elind 4153 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝐴 ∩ dom 𝐹))
34 dmres 5967 . . . . . . . . . . . . . . . 16 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
3533, 34eleqtrrdi 2839 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom (𝐹𝐴))
3631, 35jca 511 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → (Fun (𝐹𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)))
37 elinel2 4155 . . . . . . . . . . . . . . 15 (𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) → 𝑥 ∈ (𝑘[,)+∞))
3837ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝑘[,)+∞))
39 funfvima 7170 . . . . . . . . . . . . . 14 ((Fun (𝐹𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) → (𝑥 ∈ (𝑘[,)+∞) → ((𝐹𝐴)‘𝑥) ∈ ((𝐹𝐴) “ (𝑘[,)+∞))))
4036, 38, 39sylc 65 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝐴)‘𝑥) ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4128, 40eqeltrd 2828 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4241rexlimdva2 3132 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞))))
438, 42mpd 15 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4443ralrimiva 3121 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
45 dfss3 3926 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹𝐴) “ (𝑘[,)+∞)) ↔ ∀𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4644, 45sylibr 234 . . . . . . . 8 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹𝐴) “ (𝑘[,)+∞)))
47 inss2 4191 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
4847a1i 11 . . . . . . . 8 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
4946, 48ssind 4194 . . . . . . 7 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*))
503, 49eqssd 3955 . . . . . 6 (𝜑 → (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
5150supeq1d 9355 . . . . 5 (𝜑 → sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5251mpteq2dv 5189 . . . 4 (𝜑 → (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
5352rneqd 5884 . . 3 (𝜑 → ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
5453infeq1d 9387 . 2 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
55 limsupresxr.1 . . . 4 (𝜑𝐹𝑉)
5655resexd 5983 . . 3 (𝜑 → (𝐹𝐴) ∈ V)
57 eqid 2729 . . . 4 (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5857limsupval 15399 . . 3 ((𝐹𝐴) ∈ V → (lim sup‘(𝐹𝐴)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
5956, 58syl 17 . 2 (𝜑 → (lim sup‘(𝐹𝐴)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
60 eqid 2729 . . . 4 (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
6160limsupval 15399 . . 3 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
6255, 61syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
6354, 59, 623eqtr4d 2774 1 (𝜑 → (lim sup‘(𝐹𝐴)) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cin 3904  wss 3905  cmpt 5176  ccnv 5622  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  Fun wfun 6480   Fn wfn 6481  cfv 6486  (class class class)co 7353  supcsup 9349  infcinf 9350  cr 11027  +∞cpnf 11165  *cxr 11167   < clt 11168  [,)cico 13268  lim supclsp 15395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-limsup 15396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator