Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resmpti Structured version   Visualization version   GIF version

Theorem resmpti 45156
Description: Restriction of the mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
resmpti.1 𝐵𝐴
Assertion
Ref Expression
resmpti ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem resmpti
StepHypRef Expression
1 resmpti.1 . 2 𝐵𝐴
2 resmpt 5992 . 2 (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
31, 2ax-mp 5 1 ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3905  cmpt 5176  cres 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-opab 5158  df-mpt 5177  df-xp 5629  df-rel 5630  df-res 5635
This theorem is referenced by:  sge0splitmpt  46393
  Copyright terms: Public domain W3C validator