Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resmpti Structured version   Visualization version   GIF version

Theorem resmpti 45299
Description: Restriction of the mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
resmpti.1 𝐵𝐴
Assertion
Ref Expression
resmpti ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem resmpti
StepHypRef Expression
1 resmpti.1 . 2 𝐵𝐴
2 resmpt 5990 . 2 (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
31, 2ax-mp 5 1 ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3898  cmpt 5174  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-opab 5156  df-mpt 5175  df-xp 5625  df-rel 5626  df-res 5631
This theorem is referenced by:  sge0splitmpt  46533
  Copyright terms: Public domain W3C validator