|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resmpti | Structured version Visualization version GIF version | ||
| Description: Restriction of the mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| resmpti.1 | ⊢ 𝐵 ⊆ 𝐴 | 
| Ref | Expression | 
|---|---|
| resmpti | ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resmpti.1 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 2 | resmpt 6054 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ⊆ wss 3950 ↦ cmpt 5224 ↾ cres 5686 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-opab 5205 df-mpt 5225 df-xp 5690 df-rel 5691 df-res 5696 | 
| This theorem is referenced by: sge0splitmpt 46431 | 
| Copyright terms: Public domain | W3C validator |