Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptpr | Structured version Visualization version GIF version |
Description: Range of a function defined on an unordered pair. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
rnmptpr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rnmptpr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
rnmptpr.f | ⊢ 𝐹 = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐶) |
rnmptpr.d | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
rnmptpr.e | ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
rnmptpr | ⊢ (𝜑 → ran 𝐹 = {𝐷, 𝐸}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptpr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | rnmptpr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | rnmptpr.d | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
4 | 3 | eqeq2d 2749 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐶 ↔ 𝑦 = 𝐷)) |
5 | rnmptpr.e | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) | |
6 | 5 | eqeq2d 2749 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑦 = 𝐶 ↔ 𝑦 = 𝐸)) |
7 | 4, 6 | rexprg 4632 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶 ↔ (𝑦 = 𝐷 ∨ 𝑦 = 𝐸))) |
8 | 1, 2, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶 ↔ (𝑦 = 𝐷 ∨ 𝑦 = 𝐸))) |
9 | rnmptpr.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐶) | |
10 | 9 | elrnmpt 5865 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶)) |
11 | 10 | elv 3438 | . . 3 ⊢ (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶) |
12 | vex 3436 | . . . 4 ⊢ 𝑦 ∈ V | |
13 | 12 | elpr 4584 | . . 3 ⊢ (𝑦 ∈ {𝐷, 𝐸} ↔ (𝑦 = 𝐷 ∨ 𝑦 = 𝐸)) |
14 | 8, 11, 13 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ {𝐷, 𝐸})) |
15 | 14 | eqrdv 2736 | 1 ⊢ (𝜑 → ran 𝐹 = {𝐷, 𝐸}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 {cpr 4563 ↦ cmpt 5157 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: sge0pr 43932 |
Copyright terms: Public domain | W3C validator |