Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptpr Structured version   Visualization version   GIF version

Theorem rnmptpr 41801
Description: Range of a function defined on an unordered pair. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rnmptpr.a (𝜑𝐴𝑉)
rnmptpr.b (𝜑𝐵𝑊)
rnmptpr.f 𝐹 = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐶)
rnmptpr.d (𝑥 = 𝐴𝐶 = 𝐷)
rnmptpr.e (𝑥 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
rnmptpr (𝜑 → ran 𝐹 = {𝐷, 𝐸})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem rnmptpr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rnmptpr.a . . . 4 (𝜑𝐴𝑉)
2 rnmptpr.b . . . 4 (𝜑𝐵𝑊)
3 rnmptpr.d . . . . . 6 (𝑥 = 𝐴𝐶 = 𝐷)
43eqeq2d 2809 . . . . 5 (𝑥 = 𝐴 → (𝑦 = 𝐶𝑦 = 𝐷))
5 rnmptpr.e . . . . . 6 (𝑥 = 𝐵𝐶 = 𝐸)
65eqeq2d 2809 . . . . 5 (𝑥 = 𝐵 → (𝑦 = 𝐶𝑦 = 𝐸))
74, 6rexprg 4593 . . . 4 ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶 ↔ (𝑦 = 𝐷𝑦 = 𝐸)))
81, 2, 7syl2anc 587 . . 3 (𝜑 → (∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶 ↔ (𝑦 = 𝐷𝑦 = 𝐸)))
9 rnmptpr.f . . . . 5 𝐹 = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐶)
109elrnmpt 5792 . . . 4 (𝑦 ∈ V → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶))
1110elv 3446 . . 3 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶)
12 vex 3444 . . . 4 𝑦 ∈ V
1312elpr 4548 . . 3 (𝑦 ∈ {𝐷, 𝐸} ↔ (𝑦 = 𝐷𝑦 = 𝐸))
148, 11, 133bitr4g 317 . 2 (𝜑 → (𝑦 ∈ ran 𝐹𝑦 ∈ {𝐷, 𝐸}))
1514eqrdv 2796 1 (𝜑 → ran 𝐹 = {𝐷, 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wo 844   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  {cpr 4527  cmpt 5110  ran crn 5520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-mpt 5111  df-cnv 5527  df-dm 5529  df-rn 5530
This theorem is referenced by:  sge0pr  43033
  Copyright terms: Public domain W3C validator