![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > founiiun | Structured version Visualization version GIF version |
Description: Union expressed as an indexed union, when a map onto is given. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
founiiun | ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 5063 | . 2 ⊢ ∪ 𝐵 = ∪ 𝑦 ∈ 𝐵 𝑦 | |
2 | foelcdmi 6970 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
3 | eqimss2 4055 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 → 𝑦 ⊆ (𝐹‘𝑥)) | |
4 | 3 | reximi 3082 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
6 | 5 | ralrimiva 3144 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
7 | iunss2 5054 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥) → ∪ 𝑦 ∈ 𝐵 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝑦 ∈ 𝐵 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
9 | fof 6821 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
10 | 9 | ffvelcdmda 7104 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
11 | ssidd 4019 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ⊆ (𝐹‘𝑥)) | |
12 | sseq2 4022 | . . . . . . 7 ⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑥) ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑥))) | |
13 | 12 | rspcev 3622 | . . . . . 6 ⊢ (((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ (𝐹‘𝑥)) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
14 | 10, 11, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
15 | 14 | ralrimiva 3144 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
16 | iunss2 5054 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪ 𝑦 ∈ 𝐵 𝑦) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪ 𝑦 ∈ 𝐵 𝑦) |
18 | 8, 17 | eqssd 4013 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝑦 ∈ 𝐵 𝑦 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
19 | 1, 18 | eqtrid 2787 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 ∪ cuni 4912 ∪ ciun 4996 –onto→wfo 6561 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 |
This theorem is referenced by: founiiun0 45133 issalnnd 46301 caragenunicl 46480 isomenndlem 46486 |
Copyright terms: Public domain | W3C validator |