Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  founiiun Structured version   Visualization version   GIF version

Theorem founiiun 45086
Description: Union expressed as an indexed union, when a map onto is given. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
founiiun (𝐹:𝐴onto𝐵 𝐵 = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem founiiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uniiun 5081 . 2 𝐵 = 𝑦𝐵 𝑦
2 foelcdmi 6983 . . . . . 6 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
3 eqimss2 4068 . . . . . . 7 ((𝐹𝑥) = 𝑦𝑦 ⊆ (𝐹𝑥))
43reximi 3090 . . . . . 6 (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 𝑦 ⊆ (𝐹𝑥))
52, 4syl 17 . . . . 5 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 𝑦 ⊆ (𝐹𝑥))
65ralrimiva 3152 . . . 4 (𝐹:𝐴onto𝐵 → ∀𝑦𝐵𝑥𝐴 𝑦 ⊆ (𝐹𝑥))
7 iunss2 5072 . . . 4 (∀𝑦𝐵𝑥𝐴 𝑦 ⊆ (𝐹𝑥) → 𝑦𝐵 𝑦 𝑥𝐴 (𝐹𝑥))
86, 7syl 17 . . 3 (𝐹:𝐴onto𝐵 𝑦𝐵 𝑦 𝑥𝐴 (𝐹𝑥))
9 fof 6834 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
109ffvelcdmda 7118 . . . . . 6 ((𝐹:𝐴onto𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
11 ssidd 4032 . . . . . 6 ((𝐹:𝐴onto𝐵𝑥𝐴) → (𝐹𝑥) ⊆ (𝐹𝑥))
12 sseq2 4035 . . . . . . 7 (𝑦 = (𝐹𝑥) → ((𝐹𝑥) ⊆ 𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑥)))
1312rspcev 3635 . . . . . 6 (((𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑥) ⊆ (𝐹𝑥)) → ∃𝑦𝐵 (𝐹𝑥) ⊆ 𝑦)
1410, 11, 13syl2anc 583 . . . . 5 ((𝐹:𝐴onto𝐵𝑥𝐴) → ∃𝑦𝐵 (𝐹𝑥) ⊆ 𝑦)
1514ralrimiva 3152 . . . 4 (𝐹:𝐴onto𝐵 → ∀𝑥𝐴𝑦𝐵 (𝐹𝑥) ⊆ 𝑦)
16 iunss2 5072 . . . 4 (∀𝑥𝐴𝑦𝐵 (𝐹𝑥) ⊆ 𝑦 𝑥𝐴 (𝐹𝑥) ⊆ 𝑦𝐵 𝑦)
1715, 16syl 17 . . 3 (𝐹:𝐴onto𝐵 𝑥𝐴 (𝐹𝑥) ⊆ 𝑦𝐵 𝑦)
188, 17eqssd 4026 . 2 (𝐹:𝐴onto𝐵 𝑦𝐵 𝑦 = 𝑥𝐴 (𝐹𝑥))
191, 18eqtrid 2792 1 (𝐹:𝐴onto𝐵 𝐵 = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976   cuni 4931   ciun 5015  ontowfo 6571  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581
This theorem is referenced by:  founiiun0  45097  issalnnd  46266  caragenunicl  46445  isomenndlem  46451
  Copyright terms: Public domain W3C validator