| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > founiiun | Structured version Visualization version GIF version | ||
| Description: Union expressed as an indexed union, when a map onto is given. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| founiiun | ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniiun 5010 | . 2 ⊢ ∪ 𝐵 = ∪ 𝑦 ∈ 𝐵 𝑦 | |
| 2 | foelcdmi 6888 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
| 3 | eqimss2 3997 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 → 𝑦 ⊆ (𝐹‘𝑥)) | |
| 4 | 3 | reximi 3067 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 6 | 5 | ralrimiva 3121 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 7 | iunss2 5001 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥) → ∪ 𝑦 ∈ 𝐵 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝑦 ∈ 𝐵 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 9 | fof 6740 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 10 | 9 | ffvelcdmda 7022 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 11 | ssidd 3961 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ⊆ (𝐹‘𝑥)) | |
| 12 | sseq2 3964 | . . . . . . 7 ⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑥) ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑥))) | |
| 13 | 12 | rspcev 3579 | . . . . . 6 ⊢ (((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ (𝐹‘𝑥)) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 14 | 10, 11, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 15 | 14 | ralrimiva 3121 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 16 | iunss2 5001 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪ 𝑦 ∈ 𝐵 𝑦) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪ 𝑦 ∈ 𝐵 𝑦) |
| 18 | 8, 17 | eqssd 3955 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝑦 ∈ 𝐵 𝑦 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 19 | 1, 18 | eqtrid 2776 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 ∪ cuni 4861 ∪ ciun 4944 –onto→wfo 6484 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 |
| This theorem is referenced by: founiiun0 45188 issalnnd 46346 caragenunicl 46525 isomenndlem 46531 |
| Copyright terms: Public domain | W3C validator |