![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > founiiun | Structured version Visualization version GIF version |
Description: Union expressed as an indexed union, when a map onto is given. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
founiiun | ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 4845 | . 2 ⊢ ∪ 𝐵 = ∪ 𝑦 ∈ 𝐵 𝑦 | |
2 | foelrni 6555 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
3 | eqimss2 3909 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 → 𝑦 ⊆ (𝐹‘𝑥)) | |
4 | 3 | reximi 3185 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
6 | 5 | ralrimiva 3127 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
7 | iunss2 4836 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥) → ∪ 𝑦 ∈ 𝐵 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝑦 ∈ 𝐵 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
9 | fof 6417 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
10 | 9 | ffvelrnda 6675 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
11 | ssidd 3875 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ⊆ (𝐹‘𝑥)) | |
12 | sseq2 3878 | . . . . . . 7 ⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑥) ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑥))) | |
13 | 12 | rspcev 3530 | . . . . . 6 ⊢ (((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ (𝐹‘𝑥)) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
14 | 10, 11, 13 | syl2anc 576 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
15 | 14 | ralrimiva 3127 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
16 | iunss2 4836 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪ 𝑦 ∈ 𝐵 𝑦) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪ 𝑦 ∈ 𝐵 𝑦) |
18 | 8, 17 | eqssd 3870 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝑦 ∈ 𝐵 𝑦 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
19 | 1, 18 | syl5eq 2821 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3083 ∃wrex 3084 ⊆ wss 3824 ∪ cuni 4709 ∪ ciun 4789 –onto→wfo 6184 ‘cfv 6186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-fo 6192 df-fv 6194 |
This theorem is referenced by: founiiun0 40906 issalnnd 42089 caragenunicl 42267 isomenndlem 42273 |
Copyright terms: Public domain | W3C validator |