| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0splitmpt | Structured version Visualization version GIF version | ||
| Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0splitmpt.xph | ⊢ Ⅎ𝑥𝜑 |
| sge0splitmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0splitmpt.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| sge0splitmpt.in | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| sge0splitmpt.ac | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
| sge0splitmpt.bc | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| sge0splitmpt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0splitmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0splitmpt.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | eqid 2736 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
| 4 | sge0splitmpt.in | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 5 | sge0splitmpt.xph | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 6 | sge0splitmpt.ac | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
| 7 | 6 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
| 8 | simpll 766 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝜑) | |
| 9 | elunnel1 4134 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
| 10 | 9 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 11 | sge0splitmpt.bc | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) | |
| 12 | 8, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
| 13 | 7, 12 | pm2.61dan 812 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 14 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) | |
| 15 | 5, 13, 14 | fmptdf 7112 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶):(𝐴 ∪ 𝐵)⟶(0[,]+∞)) |
| 16 | 1, 2, 3, 4, 15 | sge0split 46405 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)))) |
| 17 | ssun1 4158 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 18 | 17 | resmpti 45169 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| 19 | 18 | fveq2i 6884 | . . . 4 ⊢ (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) = (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 20 | ssun2 4159 | . . . . . 6 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 21 | 20 | resmpti 45169 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| 22 | 21 | fveq2i 6884 | . . . 4 ⊢ (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)) = (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 23 | 19, 22 | oveq12i 7422 | . . 3 ⊢ ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶))) |
| 24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
| 25 | 16, 24 | eqtrd 2771 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 ↦ cmpt 5206 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 0cc0 11134 +∞cpnf 11271 +𝑒 cxad 13131 [,]cicc 13370 Σ^csumge0 46358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-xadd 13134 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 df-sumge0 46359 |
| This theorem is referenced by: sge0ss 46408 sge0iunmptlemfi 46409 sge0p1 46410 sge0splitsn 46437 ismeannd 46463 isomenndlem 46526 hoidmvlelem2 46592 |
| Copyright terms: Public domain | W3C validator |