![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0splitmpt | Structured version Visualization version GIF version |
Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0splitmpt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0splitmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0splitmpt.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
sge0splitmpt.in | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
sge0splitmpt.ac | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
sge0splitmpt.bc | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
sge0splitmpt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0splitmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0splitmpt.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | eqid 2732 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
4 | sge0splitmpt.in | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
5 | sge0splitmpt.xph | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
6 | sge0splitmpt.ac | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
7 | 6 | adantlr 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
8 | simpll 765 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝜑) | |
9 | elunnel1 4149 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
10 | 9 | adantll 712 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
11 | sge0splitmpt.bc | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) | |
12 | 8, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
13 | 7, 12 | pm2.61dan 811 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
14 | eqid 2732 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) | |
15 | 5, 13, 14 | fmptdf 7116 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶):(𝐴 ∪ 𝐵)⟶(0[,]+∞)) |
16 | 1, 2, 3, 4, 15 | sge0split 45115 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)))) |
17 | ssun1 4172 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
18 | 17 | resmpti 43864 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
19 | 18 | fveq2i 6894 | . . . 4 ⊢ (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) = (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) |
20 | ssun2 4173 | . . . . . 6 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
21 | 20 | resmpti 43864 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
22 | 21 | fveq2i 6894 | . . . 4 ⊢ (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)) = (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)) |
23 | 19, 22 | oveq12i 7420 | . . 3 ⊢ ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶))) |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
25 | 16, 24 | eqtrd 2772 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 ∪ cun 3946 ∩ cin 3947 ∅c0 4322 ↦ cmpt 5231 ↾ cres 5678 ‘cfv 6543 (class class class)co 7408 0cc0 11109 +∞cpnf 11244 +𝑒 cxad 13089 [,]cicc 13326 Σ^csumge0 45068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-xadd 13092 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-sum 15632 df-sumge0 45069 |
This theorem is referenced by: sge0ss 45118 sge0iunmptlemfi 45119 sge0p1 45120 sge0splitsn 45147 ismeannd 45173 isomenndlem 45236 hoidmvlelem2 45302 |
Copyright terms: Public domain | W3C validator |