Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0splitmpt Structured version   Visualization version   GIF version

Theorem sge0splitmpt 46367
Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0splitmpt.xph 𝑥𝜑
sge0splitmpt.a (𝜑𝐴𝑉)
sge0splitmpt.b (𝜑𝐵𝑊)
sge0splitmpt.in (𝜑 → (𝐴𝐵) = ∅)
sge0splitmpt.ac ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
sge0splitmpt.bc ((𝜑𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0splitmpt (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem sge0splitmpt
StepHypRef Expression
1 sge0splitmpt.a . . 3 (𝜑𝐴𝑉)
2 sge0splitmpt.b . . 3 (𝜑𝐵𝑊)
3 eqid 2735 . . 3 (𝐴𝐵) = (𝐴𝐵)
4 sge0splitmpt.in . . 3 (𝜑 → (𝐴𝐵) = ∅)
5 sge0splitmpt.xph . . . 4 𝑥𝜑
6 sge0splitmpt.ac . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
76adantlr 715 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
8 simpll 767 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝜑)
9 elunnel1 4164 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
109adantll 714 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
11 sge0splitmpt.bc . . . . . 6 ((𝜑𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
128, 10, 11syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
137, 12pm2.61dan 813 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
14 eqid 2735 . . . 4 (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
155, 13, 14fmptdf 7137 . . 3 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶(0[,]+∞))
161, 2, 3, 4, 15sge0split 46365 . 2 (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))))
17 ssun1 4188 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
1817resmpti 45121 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑥𝐴𝐶)
1918fveq2i 6910 . . . 4 ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) = (Σ^‘(𝑥𝐴𝐶))
20 ssun2 4189 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
2120resmpti 45121 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑥𝐵𝐶)
2221fveq2i 6910 . . . 4 ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵)) = (Σ^‘(𝑥𝐵𝐶))
2319, 22oveq12i 7443 . . 3 ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶)))
2423a1i 11 . 2 (𝜑 → ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
2516, 24eqtrd 2775 1 (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  cun 3961  cin 3962  c0 4339  cmpt 5231  cres 5691  cfv 6563  (class class class)co 7431  0cc0 11153  +∞cpnf 11290   +𝑒 cxad 13150  [,]cicc 13387  Σ^csumge0 46318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-xadd 13153  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-sumge0 46319
This theorem is referenced by:  sge0ss  46368  sge0iunmptlemfi  46369  sge0p1  46370  sge0splitsn  46397  ismeannd  46423  isomenndlem  46486  hoidmvlelem2  46552
  Copyright terms: Public domain W3C validator