Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0splitmpt | Structured version Visualization version GIF version |
Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0splitmpt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0splitmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0splitmpt.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
sge0splitmpt.in | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
sge0splitmpt.ac | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
sge0splitmpt.bc | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
sge0splitmpt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0splitmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0splitmpt.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | eqid 2738 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
4 | sge0splitmpt.in | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
5 | sge0splitmpt.xph | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
6 | sge0splitmpt.ac | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
7 | 6 | adantlr 711 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
8 | simpll 763 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝜑) | |
9 | elunnel1 4080 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
10 | 9 | adantll 710 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
11 | sge0splitmpt.bc | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) | |
12 | 8, 10, 11 | syl2anc 583 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
13 | 7, 12 | pm2.61dan 809 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
14 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) | |
15 | 5, 13, 14 | fmptdf 6973 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶):(𝐴 ∪ 𝐵)⟶(0[,]+∞)) |
16 | 1, 2, 3, 4, 15 | sge0split 43837 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)))) |
17 | ssun1 4102 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
18 | 17 | resmpti 42603 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
19 | 18 | fveq2i 6759 | . . . 4 ⊢ (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) = (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) |
20 | ssun2 4103 | . . . . . 6 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
21 | 20 | resmpti 42603 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
22 | 21 | fveq2i 6759 | . . . 4 ⊢ (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)) = (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)) |
23 | 19, 22 | oveq12i 7267 | . . 3 ⊢ ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶))) |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
25 | 16, 24 | eqtrd 2778 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 ↦ cmpt 5153 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 +𝑒 cxad 12775 [,]cicc 13011 Σ^csumge0 43790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-sumge0 43791 |
This theorem is referenced by: sge0ss 43840 sge0iunmptlemfi 43841 sge0p1 43842 sge0splitsn 43869 ismeannd 43895 isomenndlem 43958 hoidmvlelem2 44024 |
Copyright terms: Public domain | W3C validator |