| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0splitmpt | Structured version Visualization version GIF version | ||
| Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0splitmpt.xph | ⊢ Ⅎ𝑥𝜑 |
| sge0splitmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0splitmpt.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| sge0splitmpt.in | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| sge0splitmpt.ac | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
| sge0splitmpt.bc | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| sge0splitmpt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0splitmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0splitmpt.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | eqid 2730 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
| 4 | sge0splitmpt.in | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 5 | sge0splitmpt.xph | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 6 | sge0splitmpt.ac | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
| 7 | 6 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
| 8 | simpll 766 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝜑) | |
| 9 | elunnel1 4102 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
| 10 | 9 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 11 | sge0splitmpt.bc | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) | |
| 12 | 8, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
| 13 | 7, 12 | pm2.61dan 812 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 14 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) | |
| 15 | 5, 13, 14 | fmptdf 7045 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶):(𝐴 ∪ 𝐵)⟶(0[,]+∞)) |
| 16 | 1, 2, 3, 4, 15 | sge0split 46426 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)))) |
| 17 | ssun1 4126 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 18 | 17 | resmpti 45194 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| 19 | 18 | fveq2i 6820 | . . . 4 ⊢ (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) = (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 20 | ssun2 4127 | . . . . . 6 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 21 | 20 | resmpti 45194 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| 22 | 21 | fveq2i 6820 | . . . 4 ⊢ (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)) = (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 23 | 19, 22 | oveq12i 7353 | . . 3 ⊢ ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶))) |
| 24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
| 25 | 16, 24 | eqtrd 2765 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2110 ∪ cun 3898 ∩ cin 3899 ∅c0 4281 ↦ cmpt 5170 ↾ cres 5616 ‘cfv 6477 (class class class)co 7341 0cc0 10998 +∞cpnf 11135 +𝑒 cxad 13001 [,]cicc 13240 Σ^csumge0 46379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-xadd 13004 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-sum 15586 df-sumge0 46380 |
| This theorem is referenced by: sge0ss 46429 sge0iunmptlemfi 46430 sge0p1 46431 sge0splitsn 46458 ismeannd 46484 isomenndlem 46547 hoidmvlelem2 46613 |
| Copyright terms: Public domain | W3C validator |