Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0splitmpt Structured version   Visualization version   GIF version

Theorem sge0splitmpt 42989
 Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0splitmpt.xph 𝑥𝜑
sge0splitmpt.a (𝜑𝐴𝑉)
sge0splitmpt.b (𝜑𝐵𝑊)
sge0splitmpt.in (𝜑 → (𝐴𝐵) = ∅)
sge0splitmpt.ac ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
sge0splitmpt.bc ((𝜑𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0splitmpt (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem sge0splitmpt
StepHypRef Expression
1 sge0splitmpt.a . . 3 (𝜑𝐴𝑉)
2 sge0splitmpt.b . . 3 (𝜑𝐵𝑊)
3 eqid 2822 . . 3 (𝐴𝐵) = (𝐴𝐵)
4 sge0splitmpt.in . . 3 (𝜑 → (𝐴𝐵) = ∅)
5 sge0splitmpt.xph . . . 4 𝑥𝜑
6 sge0splitmpt.ac . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
76adantlr 714 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
8 simpll 766 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝜑)
9 elunnel1 4101 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
109adantll 713 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
11 sge0splitmpt.bc . . . . . 6 ((𝜑𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
128, 10, 11syl2anc 587 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
137, 12pm2.61dan 812 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
14 eqid 2822 . . . 4 (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
155, 13, 14fmptdf 6863 . . 3 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶(0[,]+∞))
161, 2, 3, 4, 15sge0split 42987 . 2 (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))))
17 ssun1 4123 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
1817resmpti 41739 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑥𝐴𝐶)
1918fveq2i 6655 . . . 4 ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) = (Σ^‘(𝑥𝐴𝐶))
20 ssun2 4124 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
2120resmpti 41739 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑥𝐵𝐶)
2221fveq2i 6655 . . . 4 ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵)) = (Σ^‘(𝑥𝐵𝐶))
2319, 22oveq12i 7152 . . 3 ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶)))
2423a1i 11 . 2 (𝜑 → ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
2516, 24eqtrd 2857 1 (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2114   ∪ cun 3906   ∩ cin 3907  ∅c0 4265   ↦ cmpt 5122   ↾ cres 5534  ‘cfv 6334  (class class class)co 7140  0cc0 10526  +∞cpnf 10661   +𝑒 cxad 12493  [,]cicc 12729  Σ^csumge0 42940 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034  df-sumge0 42941 This theorem is referenced by:  sge0ss  42990  sge0iunmptlemfi  42991  sge0p1  42992  sge0splitsn  43019  ismeannd  43045  isomenndlem  43108  hoidmvlelem2  43174
 Copyright terms: Public domain W3C validator