Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0splitmpt Structured version   Visualization version   GIF version

Theorem sge0splitmpt 43949
Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0splitmpt.xph 𝑥𝜑
sge0splitmpt.a (𝜑𝐴𝑉)
sge0splitmpt.b (𝜑𝐵𝑊)
sge0splitmpt.in (𝜑 → (𝐴𝐵) = ∅)
sge0splitmpt.ac ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
sge0splitmpt.bc ((𝜑𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0splitmpt (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem sge0splitmpt
StepHypRef Expression
1 sge0splitmpt.a . . 3 (𝜑𝐴𝑉)
2 sge0splitmpt.b . . 3 (𝜑𝐵𝑊)
3 eqid 2738 . . 3 (𝐴𝐵) = (𝐴𝐵)
4 sge0splitmpt.in . . 3 (𝜑 → (𝐴𝐵) = ∅)
5 sge0splitmpt.xph . . . 4 𝑥𝜑
6 sge0splitmpt.ac . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
76adantlr 712 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
8 simpll 764 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝜑)
9 elunnel1 4084 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
109adantll 711 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
11 sge0splitmpt.bc . . . . . 6 ((𝜑𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
128, 10, 11syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
137, 12pm2.61dan 810 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
14 eqid 2738 . . . 4 (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
155, 13, 14fmptdf 6991 . . 3 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶(0[,]+∞))
161, 2, 3, 4, 15sge0split 43947 . 2 (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))))
17 ssun1 4106 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
1817resmpti 42714 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑥𝐴𝐶)
1918fveq2i 6777 . . . 4 ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) = (Σ^‘(𝑥𝐴𝐶))
20 ssun2 4107 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
2120resmpti 42714 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑥𝐵𝐶)
2221fveq2i 6777 . . . 4 ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵)) = (Σ^‘(𝑥𝐵𝐶))
2319, 22oveq12i 7287 . . 3 ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶)))
2423a1i 11 . 2 (𝜑 → ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
2516, 24eqtrd 2778 1 (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  cun 3885  cin 3886  c0 4256  cmpt 5157  cres 5591  cfv 6433  (class class class)co 7275  0cc0 10871  +∞cpnf 11006   +𝑒 cxad 12846  [,]cicc 13082  Σ^csumge0 43900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-sumge0 43901
This theorem is referenced by:  sge0ss  43950  sge0iunmptlemfi  43951  sge0p1  43952  sge0splitsn  43979  ismeannd  44005  isomenndlem  44068  hoidmvlelem2  44134
  Copyright terms: Public domain W3C validator