Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0splitmpt Structured version   Visualization version   GIF version

Theorem sge0splitmpt 46431
Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0splitmpt.xph 𝑥𝜑
sge0splitmpt.a (𝜑𝐴𝑉)
sge0splitmpt.b (𝜑𝐵𝑊)
sge0splitmpt.in (𝜑 → (𝐴𝐵) = ∅)
sge0splitmpt.ac ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
sge0splitmpt.bc ((𝜑𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0splitmpt (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem sge0splitmpt
StepHypRef Expression
1 sge0splitmpt.a . . 3 (𝜑𝐴𝑉)
2 sge0splitmpt.b . . 3 (𝜑𝐵𝑊)
3 eqid 2736 . . 3 (𝐴𝐵) = (𝐴𝐵)
4 sge0splitmpt.in . . 3 (𝜑 → (𝐴𝐵) = ∅)
5 sge0splitmpt.xph . . . 4 𝑥𝜑
6 sge0splitmpt.ac . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
76adantlr 715 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
8 simpll 766 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝜑)
9 elunnel1 4153 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
109adantll 714 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
11 sge0splitmpt.bc . . . . . 6 ((𝜑𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
128, 10, 11syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
137, 12pm2.61dan 812 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
14 eqid 2736 . . . 4 (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
155, 13, 14fmptdf 7136 . . 3 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶(0[,]+∞))
161, 2, 3, 4, 15sge0split 46429 . 2 (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))))
17 ssun1 4177 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
1817resmpti 45188 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑥𝐴𝐶)
1918fveq2i 6908 . . . 4 ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) = (Σ^‘(𝑥𝐴𝐶))
20 ssun2 4178 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
2120resmpti 45188 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑥𝐵𝐶)
2221fveq2i 6908 . . . 4 ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵)) = (Σ^‘(𝑥𝐵𝐶))
2319, 22oveq12i 7444 . . 3 ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶)))
2423a1i 11 . 2 (𝜑 → ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
2516, 24eqtrd 2776 1 (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2107  cun 3948  cin 3949  c0 4332  cmpt 5224  cres 5686  cfv 6560  (class class class)co 7432  0cc0 11156  +∞cpnf 11293   +𝑒 cxad 13153  [,]cicc 13391  Σ^csumge0 46382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-xadd 13156  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-sumge0 46383
This theorem is referenced by:  sge0ss  46432  sge0iunmptlemfi  46433  sge0p1  46434  sge0splitsn  46461  ismeannd  46487  isomenndlem  46550  hoidmvlelem2  46616
  Copyright terms: Public domain W3C validator