Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0splitmpt Structured version   Visualization version   GIF version

Theorem sge0splitmpt 43839
Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0splitmpt.xph 𝑥𝜑
sge0splitmpt.a (𝜑𝐴𝑉)
sge0splitmpt.b (𝜑𝐵𝑊)
sge0splitmpt.in (𝜑 → (𝐴𝐵) = ∅)
sge0splitmpt.ac ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
sge0splitmpt.bc ((𝜑𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0splitmpt (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem sge0splitmpt
StepHypRef Expression
1 sge0splitmpt.a . . 3 (𝜑𝐴𝑉)
2 sge0splitmpt.b . . 3 (𝜑𝐵𝑊)
3 eqid 2738 . . 3 (𝐴𝐵) = (𝐴𝐵)
4 sge0splitmpt.in . . 3 (𝜑 → (𝐴𝐵) = ∅)
5 sge0splitmpt.xph . . . 4 𝑥𝜑
6 sge0splitmpt.ac . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
76adantlr 711 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
8 simpll 763 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝜑)
9 elunnel1 4080 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
109adantll 710 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
11 sge0splitmpt.bc . . . . . 6 ((𝜑𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
128, 10, 11syl2anc 583 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ¬ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
137, 12pm2.61dan 809 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
14 eqid 2738 . . . 4 (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
155, 13, 14fmptdf 6973 . . 3 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶(0[,]+∞))
161, 2, 3, 4, 15sge0split 43837 . 2 (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))))
17 ssun1 4102 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
1817resmpti 42603 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑥𝐴𝐶)
1918fveq2i 6759 . . . 4 ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) = (Σ^‘(𝑥𝐴𝐶))
20 ssun2 4103 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
2120resmpti 42603 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑥𝐵𝐶)
2221fveq2i 6759 . . . 4 ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵)) = (Σ^‘(𝑥𝐵𝐶))
2319, 22oveq12i 7267 . . 3 ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶)))
2423a1i 11 . 2 (𝜑 → ((Σ^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒^‘((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
2516, 24eqtrd 2778 1 (𝜑 → (Σ^‘(𝑥 ∈ (𝐴𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥𝐴𝐶)) +𝑒^‘(𝑥𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  cun 3881  cin 3882  c0 4253  cmpt 5153  cres 5582  cfv 6418  (class class class)co 7255  0cc0 10802  +∞cpnf 10937   +𝑒 cxad 12775  [,]cicc 13011  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-sumge0 43791
This theorem is referenced by:  sge0ss  43840  sge0iunmptlemfi  43841  sge0p1  43842  sge0splitsn  43869  ismeannd  43895  isomenndlem  43958  hoidmvlelem2  44024
  Copyright terms: Public domain W3C validator