| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-rn 5696 | . . . 4
⊢ ran 𝐴 = dom ◡𝐴 | 
| 2 | 1 | eleq2i 2833 | . . 3
⊢ (𝑌 ∈ ran 𝐴 ↔ 𝑌 ∈ dom ◡𝐴) | 
| 3 |  | fgreu 32682 | . . . 4
⊢ ((Fun
◡𝐴 ∧ 𝑌 ∈ dom ◡𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞)) | 
| 4 | 3 | adantll 714 | . . 3
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ dom ◡𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞)) | 
| 5 | 2, 4 | sylan2b 594 | . 2
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ ran 𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞)) | 
| 6 |  | cnvcnvss 6214 | . . . . . 6
⊢ ◡◡𝐴 ⊆ 𝐴 | 
| 7 |  | cnvssrndm 6291 | . . . . . . . . . . 11
⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) | 
| 8 | 7 | sseli 3979 | . . . . . . . . . 10
⊢ (𝑞 ∈ ◡𝐴 → 𝑞 ∈ (ran 𝐴 × dom 𝐴)) | 
| 9 |  | dfdm4 5906 | . . . . . . . . . . 11
⊢ dom 𝐴 = ran ◡𝐴 | 
| 10 | 1, 9 | xpeq12i 5713 | . . . . . . . . . 10
⊢ (ran
𝐴 × dom 𝐴) = (dom ◡𝐴 × ran ◡𝐴) | 
| 11 | 8, 10 | eleqtrdi 2851 | . . . . . . . . 9
⊢ (𝑞 ∈ ◡𝐴 → 𝑞 ∈ (dom ◡𝐴 × ran ◡𝐴)) | 
| 12 |  | 2nd1st 8063 | . . . . . . . . 9
⊢ (𝑞 ∈ (dom ◡𝐴 × ran ◡𝐴) → ∪ ◡{𝑞} = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) | 
| 13 | 11, 12 | syl 17 | . . . . . . . 8
⊢ (𝑞 ∈ ◡𝐴 → ∪ ◡{𝑞} = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) | 
| 14 | 13 | eqcomd 2743 | . . . . . . 7
⊢ (𝑞 ∈ ◡𝐴 → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞}) | 
| 15 |  | relcnv 6122 | . . . . . . . 8
⊢ Rel ◡𝐴 | 
| 16 |  | cnvf1olem 8135 | . . . . . . . . 9
⊢ ((Rel
◡𝐴 ∧ (𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞})) →
(〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ ◡◡𝐴 ∧ 𝑞 = ∪ ◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉})) | 
| 17 | 16 | simpld 494 | . . . . . . . 8
⊢ ((Rel
◡𝐴 ∧ (𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞})) → 〈(2nd
‘𝑞), (1st
‘𝑞)〉 ∈
◡◡𝐴) | 
| 18 | 15, 17 | mpan 690 | . . . . . . 7
⊢ ((𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞}) → 〈(2nd
‘𝑞), (1st
‘𝑞)〉 ∈
◡◡𝐴) | 
| 19 | 14, 18 | mpdan 687 | . . . . . 6
⊢ (𝑞 ∈ ◡𝐴 → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ ◡◡𝐴) | 
| 20 | 6, 19 | sselid 3981 | . . . . 5
⊢ (𝑞 ∈ ◡𝐴 → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ 𝐴) | 
| 21 | 20 | adantl 481 | . . . 4
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑞 ∈ ◡𝐴) → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ 𝐴) | 
| 22 |  | simpll 767 | . . . . . . 7
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → Rel 𝐴) | 
| 23 |  | simpr 484 | . . . . . . 7
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐴) | 
| 24 |  | relssdmrn 6288 | . . . . . . . . . . 11
⊢ (Rel
𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | 
| 25 | 24 | adantr 480 | . . . . . . . . . 10
⊢ ((Rel
𝐴 ∧ Fun ◡𝐴) → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | 
| 26 | 25 | sselda 3983 | . . . . . . . . 9
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ (dom 𝐴 × ran 𝐴)) | 
| 27 |  | 2nd1st 8063 | . . . . . . . . 9
⊢ (𝑝 ∈ (dom 𝐴 × ran 𝐴) → ∪ ◡{𝑝} = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) | 
| 28 | 26, 27 | syl 17 | . . . . . . . 8
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∪ ◡{𝑝} = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) | 
| 29 | 28 | eqcomd 2743 | . . . . . . 7
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝}) | 
| 30 |  | cnvf1olem 8135 | . . . . . . . 8
⊢ ((Rel
𝐴 ∧ (𝑝 ∈ 𝐴 ∧ 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝})) →
(〈(2nd ‘𝑝), (1st ‘𝑝)〉 ∈ ◡𝐴 ∧ 𝑝 = ∪ ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉})) | 
| 31 | 30 | simpld 494 | . . . . . . 7
⊢ ((Rel
𝐴 ∧ (𝑝 ∈ 𝐴 ∧ 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝})) → 〈(2nd
‘𝑝), (1st
‘𝑝)〉 ∈
◡𝐴) | 
| 32 | 22, 23, 29, 31 | syl12anc 837 | . . . . . 6
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 〈(2nd ‘𝑝), (1st ‘𝑝)〉 ∈ ◡𝐴) | 
| 33 | 15 | a1i 11 | . . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → Rel ◡𝐴) | 
| 34 |  | simplr 769 | . . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑞 ∈ ◡𝐴) | 
| 35 | 14 | ad2antlr 727 | . . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) →
〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞}) | 
| 36 | 16 | simprd 495 | . . . . . . . . . 10
⊢ ((Rel
◡𝐴 ∧ (𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞})) → 𝑞 = ∪ ◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) | 
| 37 | 33, 34, 35, 36 | syl12anc 837 | . . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑞 = ∪
◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) | 
| 38 |  | simpr 484 | . . . . . . . . . . . 12
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉) | 
| 39 | 38 | sneqd 4638 | . . . . . . . . . . 11
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → {𝑝} = {〈(2nd
‘𝑞), (1st
‘𝑞)〉}) | 
| 40 | 39 | cnveqd 5886 | . . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → ◡{𝑝} = ◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) | 
| 41 | 40 | unieqd 4920 | . . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → ∪ ◡{𝑝} = ∪
◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) | 
| 42 | 28 | ad2antrr 726 | . . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → ∪ ◡{𝑝} = 〈(2nd
‘𝑝), (1st
‘𝑝)〉) | 
| 43 | 37, 41, 42 | 3eqtr2d 2783 | . . . . . . . 8
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉) | 
| 44 | 30 | simprd 495 | . . . . . . . . . . 11
⊢ ((Rel
𝐴 ∧ (𝑝 ∈ 𝐴 ∧ 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝})) → 𝑝 = ∪ ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) | 
| 45 | 22, 23, 29, 44 | syl12anc 837 | . . . . . . . . . 10
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 𝑝 = ∪ ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) | 
| 46 | 45 | ad2antrr 726 | . . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → 𝑝 = ∪
◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) | 
| 47 |  | simpr 484 | . . . . . . . . . . . 12
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉) | 
| 48 | 47 | sneqd 4638 | . . . . . . . . . . 11
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → {𝑞} = {〈(2nd
‘𝑝), (1st
‘𝑝)〉}) | 
| 49 | 48 | cnveqd 5886 | . . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → ◡{𝑞} = ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) | 
| 50 | 49 | unieqd 4920 | . . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → ∪ ◡{𝑞} = ∪
◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) | 
| 51 | 13 | ad2antlr 727 | . . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → ∪ ◡{𝑞} = 〈(2nd
‘𝑞), (1st
‘𝑞)〉) | 
| 52 | 46, 50, 51 | 3eqtr2d 2783 | . . . . . . . 8
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → 𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉) | 
| 53 | 43, 52 | impbida 801 | . . . . . . 7
⊢ ((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) → (𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉)) | 
| 54 | 53 | ralrimiva 3146 | . . . . . 6
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉)) | 
| 55 |  | eqeq2 2749 | . . . . . . . . 9
⊢ (𝑟 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉 →
(𝑞 = 𝑟 ↔ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉)) | 
| 56 | 55 | bibi2d 342 | . . . . . . . 8
⊢ (𝑟 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉 →
((𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉 ↔
𝑞 = 𝑟) ↔ (𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉))) | 
| 57 | 56 | ralbidv 3178 | . . . . . . 7
⊢ (𝑟 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉 →
(∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟) ↔ ∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉))) | 
| 58 | 57 | rspcev 3622 | . . . . . 6
⊢
((〈(2nd ‘𝑝), (1st ‘𝑝)〉 ∈ ◡𝐴 ∧ ∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉)) →
∃𝑟 ∈ ◡ 𝐴∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟)) | 
| 59 | 32, 54, 58 | syl2anc 584 | . . . . 5
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∃𝑟 ∈ ◡ 𝐴∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟)) | 
| 60 |  | reu6 3732 | . . . . 5
⊢
(∃!𝑞 ∈
◡ 𝐴𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ ∃𝑟 ∈ ◡ 𝐴∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟)) | 
| 61 | 59, 60 | sylibr 234 | . . . 4
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) | 
| 62 |  | fvex 6919 | . . . . . . 7
⊢
(2nd ‘𝑞) ∈ V | 
| 63 |  | fvex 6919 | . . . . . . 7
⊢
(1st ‘𝑞) ∈ V | 
| 64 | 62, 63 | op2ndd 8025 | . . . . . 6
⊢ (𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉 →
(2nd ‘𝑝) =
(1st ‘𝑞)) | 
| 65 | 64 | eqeq2d 2748 | . . . . 5
⊢ (𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉 →
(𝑌 = (2nd
‘𝑝) ↔ 𝑌 = (1st ‘𝑞))) | 
| 66 | 65 | adantl 481 | . . . 4
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → (𝑌 = (2nd ‘𝑝) ↔ 𝑌 = (1st ‘𝑞))) | 
| 67 | 21, 61, 66 | reuxfr1d 3756 | . . 3
⊢ ((Rel
𝐴 ∧ Fun ◡𝐴) → (∃!𝑝 ∈ 𝐴 𝑌 = (2nd ‘𝑝) ↔ ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞))) | 
| 68 | 67 | adantr 480 | . 2
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ ran 𝐴) → (∃!𝑝 ∈ 𝐴 𝑌 = (2nd ‘𝑝) ↔ ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞))) | 
| 69 | 5, 68 | mpbird 257 | 1
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ ran 𝐴) → ∃!𝑝 ∈ 𝐴 𝑌 = (2nd ‘𝑝)) |