Step | Hyp | Ref
| Expression |
1 | | df-rn 5535 |
. . . 4
⊢ ran 𝐴 = dom ◡𝐴 |
2 | 1 | eleq2i 2843 |
. . 3
⊢ (𝑌 ∈ ran 𝐴 ↔ 𝑌 ∈ dom ◡𝐴) |
3 | | fgreu 30533 |
. . . 4
⊢ ((Fun
◡𝐴 ∧ 𝑌 ∈ dom ◡𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞)) |
4 | 3 | adantll 713 |
. . 3
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ dom ◡𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞)) |
5 | 2, 4 | sylan2b 596 |
. 2
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ ran 𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞)) |
6 | | cnvcnvss 6023 |
. . . . . 6
⊢ ◡◡𝐴 ⊆ 𝐴 |
7 | | cnvssrndm 6100 |
. . . . . . . . . . 11
⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
8 | 7 | sseli 3888 |
. . . . . . . . . 10
⊢ (𝑞 ∈ ◡𝐴 → 𝑞 ∈ (ran 𝐴 × dom 𝐴)) |
9 | | dfdm4 5735 |
. . . . . . . . . . 11
⊢ dom 𝐴 = ran ◡𝐴 |
10 | 1, 9 | xpeq12i 5552 |
. . . . . . . . . 10
⊢ (ran
𝐴 × dom 𝐴) = (dom ◡𝐴 × ran ◡𝐴) |
11 | 8, 10 | eleqtrdi 2862 |
. . . . . . . . 9
⊢ (𝑞 ∈ ◡𝐴 → 𝑞 ∈ (dom ◡𝐴 × ran ◡𝐴)) |
12 | | 2nd1st 7741 |
. . . . . . . . 9
⊢ (𝑞 ∈ (dom ◡𝐴 × ran ◡𝐴) → ∪ ◡{𝑞} = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) |
13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (𝑞 ∈ ◡𝐴 → ∪ ◡{𝑞} = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) |
14 | 13 | eqcomd 2764 |
. . . . . . 7
⊢ (𝑞 ∈ ◡𝐴 → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞}) |
15 | | relcnv 5939 |
. . . . . . . 8
⊢ Rel ◡𝐴 |
16 | | cnvf1olem 7810 |
. . . . . . . . 9
⊢ ((Rel
◡𝐴 ∧ (𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞})) →
(〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ ◡◡𝐴 ∧ 𝑞 = ∪ ◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉})) |
17 | 16 | simpld 498 |
. . . . . . . 8
⊢ ((Rel
◡𝐴 ∧ (𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞})) → 〈(2nd
‘𝑞), (1st
‘𝑞)〉 ∈
◡◡𝐴) |
18 | 15, 17 | mpan 689 |
. . . . . . 7
⊢ ((𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞}) → 〈(2nd
‘𝑞), (1st
‘𝑞)〉 ∈
◡◡𝐴) |
19 | 14, 18 | mpdan 686 |
. . . . . 6
⊢ (𝑞 ∈ ◡𝐴 → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ ◡◡𝐴) |
20 | 6, 19 | sseldi 3890 |
. . . . 5
⊢ (𝑞 ∈ ◡𝐴 → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ 𝐴) |
21 | 20 | adantl 485 |
. . . 4
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑞 ∈ ◡𝐴) → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ 𝐴) |
22 | | simpll 766 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → Rel 𝐴) |
23 | | simpr 488 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐴) |
24 | | relssdmrn 6098 |
. . . . . . . . . . 11
⊢ (Rel
𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
25 | 24 | adantr 484 |
. . . . . . . . . 10
⊢ ((Rel
𝐴 ∧ Fun ◡𝐴) → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
26 | 25 | sselda 3892 |
. . . . . . . . 9
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ (dom 𝐴 × ran 𝐴)) |
27 | | 2nd1st 7741 |
. . . . . . . . 9
⊢ (𝑝 ∈ (dom 𝐴 × ran 𝐴) → ∪ ◡{𝑝} = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∪ ◡{𝑝} = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) |
29 | 28 | eqcomd 2764 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝}) |
30 | | cnvf1olem 7810 |
. . . . . . . 8
⊢ ((Rel
𝐴 ∧ (𝑝 ∈ 𝐴 ∧ 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝})) →
(〈(2nd ‘𝑝), (1st ‘𝑝)〉 ∈ ◡𝐴 ∧ 𝑝 = ∪ ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉})) |
31 | 30 | simpld 498 |
. . . . . . 7
⊢ ((Rel
𝐴 ∧ (𝑝 ∈ 𝐴 ∧ 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝})) → 〈(2nd
‘𝑝), (1st
‘𝑝)〉 ∈
◡𝐴) |
32 | 22, 23, 29, 31 | syl12anc 835 |
. . . . . 6
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 〈(2nd ‘𝑝), (1st ‘𝑝)〉 ∈ ◡𝐴) |
33 | 15 | a1i 11 |
. . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → Rel ◡𝐴) |
34 | | simplr 768 |
. . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑞 ∈ ◡𝐴) |
35 | 14 | ad2antlr 726 |
. . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) →
〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞}) |
36 | 16 | simprd 499 |
. . . . . . . . . 10
⊢ ((Rel
◡𝐴 ∧ (𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞})) → 𝑞 = ∪ ◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) |
37 | 33, 34, 35, 36 | syl12anc 835 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑞 = ∪
◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) |
38 | | simpr 488 |
. . . . . . . . . . . 12
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉) |
39 | 38 | sneqd 4534 |
. . . . . . . . . . 11
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → {𝑝} = {〈(2nd
‘𝑞), (1st
‘𝑞)〉}) |
40 | 39 | cnveqd 5715 |
. . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → ◡{𝑝} = ◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) |
41 | 40 | unieqd 4812 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → ∪ ◡{𝑝} = ∪
◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) |
42 | 28 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → ∪ ◡{𝑝} = 〈(2nd
‘𝑝), (1st
‘𝑝)〉) |
43 | 37, 41, 42 | 3eqtr2d 2799 |
. . . . . . . 8
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉) |
44 | 30 | simprd 499 |
. . . . . . . . . . 11
⊢ ((Rel
𝐴 ∧ (𝑝 ∈ 𝐴 ∧ 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝})) → 𝑝 = ∪ ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) |
45 | 22, 23, 29, 44 | syl12anc 835 |
. . . . . . . . . 10
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 𝑝 = ∪ ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) |
46 | 45 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → 𝑝 = ∪
◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) |
47 | | simpr 488 |
. . . . . . . . . . . 12
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉) |
48 | 47 | sneqd 4534 |
. . . . . . . . . . 11
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → {𝑞} = {〈(2nd
‘𝑝), (1st
‘𝑝)〉}) |
49 | 48 | cnveqd 5715 |
. . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → ◡{𝑞} = ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) |
50 | 49 | unieqd 4812 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → ∪ ◡{𝑞} = ∪
◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) |
51 | 13 | ad2antlr 726 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → ∪ ◡{𝑞} = 〈(2nd
‘𝑞), (1st
‘𝑞)〉) |
52 | 46, 50, 51 | 3eqtr2d 2799 |
. . . . . . . 8
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → 𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉) |
53 | 43, 52 | impbida 800 |
. . . . . . 7
⊢ ((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) → (𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉)) |
54 | 53 | ralrimiva 3113 |
. . . . . 6
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉)) |
55 | | eqeq2 2770 |
. . . . . . . . 9
⊢ (𝑟 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉 →
(𝑞 = 𝑟 ↔ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉)) |
56 | 55 | bibi2d 346 |
. . . . . . . 8
⊢ (𝑟 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉 →
((𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉 ↔
𝑞 = 𝑟) ↔ (𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉))) |
57 | 56 | ralbidv 3126 |
. . . . . . 7
⊢ (𝑟 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉 →
(∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟) ↔ ∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉))) |
58 | 57 | rspcev 3541 |
. . . . . 6
⊢
((〈(2nd ‘𝑝), (1st ‘𝑝)〉 ∈ ◡𝐴 ∧ ∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉)) →
∃𝑟 ∈ ◡ 𝐴∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟)) |
59 | 32, 54, 58 | syl2anc 587 |
. . . . 5
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∃𝑟 ∈ ◡ 𝐴∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟)) |
60 | | reu6 3640 |
. . . . 5
⊢
(∃!𝑞 ∈
◡ 𝐴𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ ∃𝑟 ∈ ◡ 𝐴∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟)) |
61 | 59, 60 | sylibr 237 |
. . . 4
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) |
62 | | fvex 6671 |
. . . . . . 7
⊢
(2nd ‘𝑞) ∈ V |
63 | | fvex 6671 |
. . . . . . 7
⊢
(1st ‘𝑞) ∈ V |
64 | 62, 63 | op2ndd 7704 |
. . . . . 6
⊢ (𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉 →
(2nd ‘𝑝) =
(1st ‘𝑞)) |
65 | 64 | eqeq2d 2769 |
. . . . 5
⊢ (𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉 →
(𝑌 = (2nd
‘𝑝) ↔ 𝑌 = (1st ‘𝑞))) |
66 | 65 | adantl 485 |
. . . 4
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → (𝑌 = (2nd ‘𝑝) ↔ 𝑌 = (1st ‘𝑞))) |
67 | 21, 61, 66 | reuxfr1d 3664 |
. . 3
⊢ ((Rel
𝐴 ∧ Fun ◡𝐴) → (∃!𝑝 ∈ 𝐴 𝑌 = (2nd ‘𝑝) ↔ ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞))) |
68 | 67 | adantr 484 |
. 2
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ ran 𝐴) → (∃!𝑝 ∈ 𝐴 𝑌 = (2nd ‘𝑝) ↔ ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞))) |
69 | 5, 68 | mpbird 260 |
1
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ ran 𝐴) → ∃!𝑝 ∈ 𝐴 𝑌 = (2nd ‘𝑝)) |