| Step | Hyp | Ref
| Expression |
| 1 | | df-rn 5670 |
. . . 4
⊢ ran 𝐴 = dom ◡𝐴 |
| 2 | 1 | eleq2i 2827 |
. . 3
⊢ (𝑌 ∈ ran 𝐴 ↔ 𝑌 ∈ dom ◡𝐴) |
| 3 | | fgreu 32655 |
. . . 4
⊢ ((Fun
◡𝐴 ∧ 𝑌 ∈ dom ◡𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞)) |
| 4 | 3 | adantll 714 |
. . 3
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ dom ◡𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞)) |
| 5 | 2, 4 | sylan2b 594 |
. 2
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ ran 𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞)) |
| 6 | | cnvcnvss 6188 |
. . . . . 6
⊢ ◡◡𝐴 ⊆ 𝐴 |
| 7 | | cnvssrndm 6265 |
. . . . . . . . . . 11
⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
| 8 | 7 | sseli 3959 |
. . . . . . . . . 10
⊢ (𝑞 ∈ ◡𝐴 → 𝑞 ∈ (ran 𝐴 × dom 𝐴)) |
| 9 | | dfdm4 5880 |
. . . . . . . . . . 11
⊢ dom 𝐴 = ran ◡𝐴 |
| 10 | 1, 9 | xpeq12i 5687 |
. . . . . . . . . 10
⊢ (ran
𝐴 × dom 𝐴) = (dom ◡𝐴 × ran ◡𝐴) |
| 11 | 8, 10 | eleqtrdi 2845 |
. . . . . . . . 9
⊢ (𝑞 ∈ ◡𝐴 → 𝑞 ∈ (dom ◡𝐴 × ran ◡𝐴)) |
| 12 | | 2nd1st 8042 |
. . . . . . . . 9
⊢ (𝑞 ∈ (dom ◡𝐴 × ran ◡𝐴) → ∪ ◡{𝑞} = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (𝑞 ∈ ◡𝐴 → ∪ ◡{𝑞} = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) |
| 14 | 13 | eqcomd 2742 |
. . . . . . 7
⊢ (𝑞 ∈ ◡𝐴 → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞}) |
| 15 | | relcnv 6096 |
. . . . . . . 8
⊢ Rel ◡𝐴 |
| 16 | | cnvf1olem 8114 |
. . . . . . . . 9
⊢ ((Rel
◡𝐴 ∧ (𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞})) →
(〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ ◡◡𝐴 ∧ 𝑞 = ∪ ◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉})) |
| 17 | 16 | simpld 494 |
. . . . . . . 8
⊢ ((Rel
◡𝐴 ∧ (𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞})) → 〈(2nd
‘𝑞), (1st
‘𝑞)〉 ∈
◡◡𝐴) |
| 18 | 15, 17 | mpan 690 |
. . . . . . 7
⊢ ((𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞}) → 〈(2nd
‘𝑞), (1st
‘𝑞)〉 ∈
◡◡𝐴) |
| 19 | 14, 18 | mpdan 687 |
. . . . . 6
⊢ (𝑞 ∈ ◡𝐴 → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ ◡◡𝐴) |
| 20 | 6, 19 | sselid 3961 |
. . . . 5
⊢ (𝑞 ∈ ◡𝐴 → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ 𝐴) |
| 21 | 20 | adantl 481 |
. . . 4
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑞 ∈ ◡𝐴) → 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ∈ 𝐴) |
| 22 | | simpll 766 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → Rel 𝐴) |
| 23 | | simpr 484 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐴) |
| 24 | | relssdmrn 6262 |
. . . . . . . . . . 11
⊢ (Rel
𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
| 25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((Rel
𝐴 ∧ Fun ◡𝐴) → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
| 26 | 25 | sselda 3963 |
. . . . . . . . 9
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ (dom 𝐴 × ran 𝐴)) |
| 27 | | 2nd1st 8042 |
. . . . . . . . 9
⊢ (𝑝 ∈ (dom 𝐴 × ran 𝐴) → ∪ ◡{𝑝} = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) |
| 28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∪ ◡{𝑝} = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) |
| 29 | 28 | eqcomd 2742 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝}) |
| 30 | | cnvf1olem 8114 |
. . . . . . . 8
⊢ ((Rel
𝐴 ∧ (𝑝 ∈ 𝐴 ∧ 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝})) →
(〈(2nd ‘𝑝), (1st ‘𝑝)〉 ∈ ◡𝐴 ∧ 𝑝 = ∪ ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉})) |
| 31 | 30 | simpld 494 |
. . . . . . 7
⊢ ((Rel
𝐴 ∧ (𝑝 ∈ 𝐴 ∧ 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝})) → 〈(2nd
‘𝑝), (1st
‘𝑝)〉 ∈
◡𝐴) |
| 32 | 22, 23, 29, 31 | syl12anc 836 |
. . . . . 6
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 〈(2nd ‘𝑝), (1st ‘𝑝)〉 ∈ ◡𝐴) |
| 33 | 15 | a1i 11 |
. . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → Rel ◡𝐴) |
| 34 | | simplr 768 |
. . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑞 ∈ ◡𝐴) |
| 35 | 14 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) →
〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞}) |
| 36 | 16 | simprd 495 |
. . . . . . . . . 10
⊢ ((Rel
◡𝐴 ∧ (𝑞 ∈ ◡𝐴 ∧ 〈(2nd ‘𝑞), (1st ‘𝑞)〉 = ∪ ◡{𝑞})) → 𝑞 = ∪ ◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) |
| 37 | 33, 34, 35, 36 | syl12anc 836 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑞 = ∪
◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) |
| 38 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉) |
| 39 | 38 | sneqd 4618 |
. . . . . . . . . . 11
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → {𝑝} = {〈(2nd
‘𝑞), (1st
‘𝑞)〉}) |
| 40 | 39 | cnveqd 5860 |
. . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → ◡{𝑝} = ◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) |
| 41 | 40 | unieqd 4901 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → ∪ ◡{𝑝} = ∪
◡{〈(2nd ‘𝑞), (1st ‘𝑞)〉}) |
| 42 | 28 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → ∪ ◡{𝑝} = 〈(2nd
‘𝑝), (1st
‘𝑝)〉) |
| 43 | 37, 41, 42 | 3eqtr2d 2777 |
. . . . . . . 8
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉) |
| 44 | 30 | simprd 495 |
. . . . . . . . . . 11
⊢ ((Rel
𝐴 ∧ (𝑝 ∈ 𝐴 ∧ 〈(2nd ‘𝑝), (1st ‘𝑝)〉 = ∪ ◡{𝑝})) → 𝑝 = ∪ ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) |
| 45 | 22, 23, 29, 44 | syl12anc 836 |
. . . . . . . . . 10
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → 𝑝 = ∪ ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → 𝑝 = ∪
◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) |
| 47 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉) |
| 48 | 47 | sneqd 4618 |
. . . . . . . . . . 11
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → {𝑞} = {〈(2nd
‘𝑝), (1st
‘𝑝)〉}) |
| 49 | 48 | cnveqd 5860 |
. . . . . . . . . 10
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → ◡{𝑞} = ◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) |
| 50 | 49 | unieqd 4901 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → ∪ ◡{𝑞} = ∪
◡{〈(2nd ‘𝑝), (1st ‘𝑝)〉}) |
| 51 | 13 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → ∪ ◡{𝑞} = 〈(2nd
‘𝑞), (1st
‘𝑞)〉) |
| 52 | 46, 50, 51 | 3eqtr2d 2777 |
. . . . . . . 8
⊢ (((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) ∧ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉) → 𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉) |
| 53 | 43, 52 | impbida 800 |
. . . . . . 7
⊢ ((((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ ◡𝐴) → (𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉)) |
| 54 | 53 | ralrimiva 3133 |
. . . . . 6
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉)) |
| 55 | | eqeq2 2748 |
. . . . . . . . 9
⊢ (𝑟 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉 →
(𝑞 = 𝑟 ↔ 𝑞 = 〈(2nd ‘𝑝), (1st ‘𝑝)〉)) |
| 56 | 55 | bibi2d 342 |
. . . . . . . 8
⊢ (𝑟 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉 →
((𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉 ↔
𝑞 = 𝑟) ↔ (𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉))) |
| 57 | 56 | ralbidv 3164 |
. . . . . . 7
⊢ (𝑟 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉 →
(∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟) ↔ ∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉))) |
| 58 | 57 | rspcev 3606 |
. . . . . 6
⊢
((〈(2nd ‘𝑝), (1st ‘𝑝)〉 ∈ ◡𝐴 ∧ ∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 〈(2nd
‘𝑝), (1st
‘𝑝)〉)) →
∃𝑟 ∈ ◡ 𝐴∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟)) |
| 59 | 32, 54, 58 | syl2anc 584 |
. . . . 5
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∃𝑟 ∈ ◡ 𝐴∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟)) |
| 60 | | reu6 3714 |
. . . . 5
⊢
(∃!𝑞 ∈
◡ 𝐴𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ ∃𝑟 ∈ ◡ 𝐴∀𝑞 ∈ ◡ 𝐴(𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉 ↔ 𝑞 = 𝑟)) |
| 61 | 59, 60 | sylibr 234 |
. . . 4
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 ∈ 𝐴) → ∃!𝑞 ∈ ◡ 𝐴𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) |
| 62 | | fvex 6894 |
. . . . . . 7
⊢
(2nd ‘𝑞) ∈ V |
| 63 | | fvex 6894 |
. . . . . . 7
⊢
(1st ‘𝑞) ∈ V |
| 64 | 62, 63 | op2ndd 8004 |
. . . . . 6
⊢ (𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉 →
(2nd ‘𝑝) =
(1st ‘𝑞)) |
| 65 | 64 | eqeq2d 2747 |
. . . . 5
⊢ (𝑝 = 〈(2nd
‘𝑞), (1st
‘𝑞)〉 →
(𝑌 = (2nd
‘𝑝) ↔ 𝑌 = (1st ‘𝑞))) |
| 66 | 65 | adantl 481 |
. . . 4
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑝 = 〈(2nd ‘𝑞), (1st ‘𝑞)〉) → (𝑌 = (2nd ‘𝑝) ↔ 𝑌 = (1st ‘𝑞))) |
| 67 | 21, 61, 66 | reuxfr1d 3738 |
. . 3
⊢ ((Rel
𝐴 ∧ Fun ◡𝐴) → (∃!𝑝 ∈ 𝐴 𝑌 = (2nd ‘𝑝) ↔ ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞))) |
| 68 | 67 | adantr 480 |
. 2
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ ran 𝐴) → (∃!𝑝 ∈ 𝐴 𝑌 = (2nd ‘𝑝) ↔ ∃!𝑞 ∈ ◡ 𝐴𝑌 = (1st ‘𝑞))) |
| 69 | 5, 68 | mpbird 257 |
1
⊢ (((Rel
𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ ran 𝐴) → ∃!𝑝 ∈ 𝐴 𝑌 = (2nd ‘𝑝)) |