| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reuf1od | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in each of two isomorphic sets. (Contributed by AV, 19-Mar-2023.) |
| Ref | Expression |
|---|---|
| reuf1od.f | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) |
| reuf1od.x | ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reuf1od | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuf1od.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) | |
| 2 | f1of 6803 | . . . 4 ⊢ (𝐹:𝐶–1-1-onto→𝐵 → 𝐹:𝐶⟶𝐵) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
| 4 | 3 | ffvelcdmda 7059 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝐹‘𝑦) ∈ 𝐵) |
| 5 | f1ofveu 7384 | . . . 4 ⊢ ((𝐹:𝐶–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 (𝐹‘𝑦) = 𝑥) | |
| 6 | eqcom 2737 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑦) ↔ (𝐹‘𝑦) = 𝑥) | |
| 7 | 6 | reubii 3365 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦) ↔ ∃!𝑦 ∈ 𝐶 (𝐹‘𝑦) = 𝑥) |
| 8 | 5, 7 | sylibr 234 | . . 3 ⊢ ((𝐹:𝐶–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦)) |
| 9 | 1, 8 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦)) |
| 10 | reuf1od.x | . 2 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) | |
| 11 | 4, 9, 10 | reuxfr1d 3724 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3354 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |