Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuf1od Structured version   Visualization version   GIF version

Theorem reuf1od 47138
Description: There is exactly one element in each of two isomorphic sets. (Contributed by AV, 19-Mar-2023.)
Hypotheses
Ref Expression
reuf1od.f (𝜑𝐹:𝐶1-1-onto𝐵)
reuf1od.x ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))
Assertion
Ref Expression
reuf1od (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem reuf1od
StepHypRef Expression
1 reuf1od.f . . . 4 (𝜑𝐹:𝐶1-1-onto𝐵)
2 f1of 6763 . . . 4 (𝐹:𝐶1-1-onto𝐵𝐹:𝐶𝐵)
31, 2syl 17 . . 3 (𝜑𝐹:𝐶𝐵)
43ffvelcdmda 7017 . 2 ((𝜑𝑦𝐶) → (𝐹𝑦) ∈ 𝐵)
5 f1ofveu 7340 . . . 4 ((𝐹:𝐶1-1-onto𝐵𝑥𝐵) → ∃!𝑦𝐶 (𝐹𝑦) = 𝑥)
6 eqcom 2738 . . . . 5 (𝑥 = (𝐹𝑦) ↔ (𝐹𝑦) = 𝑥)
76reubii 3355 . . . 4 (∃!𝑦𝐶 𝑥 = (𝐹𝑦) ↔ ∃!𝑦𝐶 (𝐹𝑦) = 𝑥)
85, 7sylibr 234 . . 3 ((𝐹:𝐶1-1-onto𝐵𝑥𝐵) → ∃!𝑦𝐶 𝑥 = (𝐹𝑦))
91, 8sylan 580 . 2 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = (𝐹𝑦))
10 reuf1od.x . 2 ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))
114, 9, 10reuxfr1d 3709 1 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ∃!wreu 3344  wf 6477  1-1-ontowf1o 6480  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator