Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuf1od Structured version   Visualization version   GIF version

Theorem reuf1od 44600
Description: There is exactly one element in each of two isomorphic sets. (Contributed by AV, 19-Mar-2023.)
Hypotheses
Ref Expression
reuf1od.f (𝜑𝐹:𝐶1-1-onto𝐵)
reuf1od.x ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))
Assertion
Ref Expression
reuf1od (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem reuf1od
StepHypRef Expression
1 reuf1od.f . . . 4 (𝜑𝐹:𝐶1-1-onto𝐵)
2 f1of 6716 . . . 4 (𝐹:𝐶1-1-onto𝐵𝐹:𝐶𝐵)
31, 2syl 17 . . 3 (𝜑𝐹:𝐶𝐵)
43ffvelrnda 6961 . 2 ((𝜑𝑦𝐶) → (𝐹𝑦) ∈ 𝐵)
5 f1ofveu 7270 . . . 4 ((𝐹:𝐶1-1-onto𝐵𝑥𝐵) → ∃!𝑦𝐶 (𝐹𝑦) = 𝑥)
6 eqcom 2745 . . . . 5 (𝑥 = (𝐹𝑦) ↔ (𝐹𝑦) = 𝑥)
76reubii 3325 . . . 4 (∃!𝑦𝐶 𝑥 = (𝐹𝑦) ↔ ∃!𝑦𝐶 (𝐹𝑦) = 𝑥)
85, 7sylibr 233 . . 3 ((𝐹:𝐶1-1-onto𝐵𝑥𝐵) → ∃!𝑦𝐶 𝑥 = (𝐹𝑦))
91, 8sylan 580 . 2 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = (𝐹𝑦))
10 reuf1od.x . 2 ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))
114, 9, 10reuxfr1d 3685 1 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  ∃!wreu 3066  wf 6429  1-1-ontowf1o 6432  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator