Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuf1od Structured version   Visualization version   GIF version

Theorem reuf1od 47093
Description: There is exactly one element in each of two isomorphic sets. (Contributed by AV, 19-Mar-2023.)
Hypotheses
Ref Expression
reuf1od.f (𝜑𝐹:𝐶1-1-onto𝐵)
reuf1od.x ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))
Assertion
Ref Expression
reuf1od (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem reuf1od
StepHypRef Expression
1 reuf1od.f . . . 4 (𝜑𝐹:𝐶1-1-onto𝐵)
2 f1of 6768 . . . 4 (𝐹:𝐶1-1-onto𝐵𝐹:𝐶𝐵)
31, 2syl 17 . . 3 (𝜑𝐹:𝐶𝐵)
43ffvelcdmda 7022 . 2 ((𝜑𝑦𝐶) → (𝐹𝑦) ∈ 𝐵)
5 f1ofveu 7347 . . . 4 ((𝐹:𝐶1-1-onto𝐵𝑥𝐵) → ∃!𝑦𝐶 (𝐹𝑦) = 𝑥)
6 eqcom 2736 . . . . 5 (𝑥 = (𝐹𝑦) ↔ (𝐹𝑦) = 𝑥)
76reubii 3354 . . . 4 (∃!𝑦𝐶 𝑥 = (𝐹𝑦) ↔ ∃!𝑦𝐶 (𝐹𝑦) = 𝑥)
85, 7sylibr 234 . . 3 ((𝐹:𝐶1-1-onto𝐵𝑥𝐵) → ∃!𝑦𝐶 𝑥 = (𝐹𝑦))
91, 8sylan 580 . 2 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = (𝐹𝑦))
10 reuf1od.x . 2 ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))
114, 9, 10reuxfr1d 3712 1 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3343  wf 6482  1-1-ontowf1o 6485  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator