Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnemeet2 Structured version   Visualization version   GIF version

Theorem fnemeet2 34098
Description: The meet of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnemeet2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)))
Distinct variable groups:   𝑦,𝑡,𝑥,𝑆   𝑡,𝑉,𝑥   𝑡,𝑋,𝑥,𝑦   𝑡,𝑇,𝑥
Allowed substitution hints:   𝑇(𝑦)   𝑉(𝑦)

Proof of Theorem fnemeet2
StepHypRef Expression
1 riin0 4970 . . . . . . . . . 10 (𝑆 = ∅ → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝒫 𝑋)
21unieqd 4813 . . . . . . . . 9 (𝑆 = ∅ → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝒫 𝑋)
3 unipw 5312 . . . . . . . . 9 𝒫 𝑋 = 𝑋
42, 3eqtr2di 2811 . . . . . . . 8 (𝑆 = ∅ → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
54a1i 11 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑆 = ∅ → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
6 n0 4246 . . . . . . . 8 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
7 unieq 4810 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 𝑦 = 𝑥)
87eqeq2d 2770 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑋 = 𝑦𝑋 = 𝑥))
98rspccva 3541 . . . . . . . . . . . 12 ((∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = 𝑥)
1093adant1 1128 . . . . . . . . . . 11 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = 𝑥)
11 fnemeet1 34097 . . . . . . . . . . . 12 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥)
12 eqid 2759 . . . . . . . . . . . . 13 (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))
13 eqid 2759 . . . . . . . . . . . . 13 𝑥 = 𝑥
1412, 13fnebas 34075 . . . . . . . . . . . 12 ((𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥 (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝑥)
1511, 14syl 17 . . . . . . . . . . 11 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝑥)
1610, 15eqtr4d 2797 . . . . . . . . . 10 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
17163expia 1119 . . . . . . . . 9 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑥𝑆𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
1817exlimdv 1935 . . . . . . . 8 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (∃𝑥 𝑥𝑆𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
196, 18syl5bi 245 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑆 ≠ ∅ → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
205, 19pm2.61dne 3038 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
2120adantr 485 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
22 eqid 2759 . . . . . . 7 𝑇 = 𝑇
2322, 12fnebas 34075 . . . . . 6 (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
2423adantl 486 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))) → 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
2521, 24eqtr4d 2797 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))) → 𝑋 = 𝑇)
2625ex 417 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑋 = 𝑇))
27 fnetr 34082 . . . . . . 7 ((𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∧ (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥) → 𝑇Fne𝑥)
2827expcom 418 . . . . . 6 ((𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥 → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥))
2911, 28syl 17 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥))
30293expa 1116 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑥𝑆) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥))
3130ralrimdva 3119 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → ∀𝑥𝑆 𝑇Fne𝑥))
3226, 31jcad 517 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)))
33 simprl 771 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑋 = 𝑇)
3420adantr 485 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
3533, 34eqtr3d 2796 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
36 eqimss2 3950 . . . . . . . 8 (𝑋 = 𝑇 𝑇𝑋)
3736ad2antrl 728 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇𝑋)
38 sspwuni 4988 . . . . . . 7 (𝑇 ⊆ 𝒫 𝑋 𝑇𝑋)
3937, 38sylibr 237 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ 𝒫 𝑋)
40 breq2 5037 . . . . . . . . . 10 (𝑥 = 𝑡 → (𝑇Fne𝑥𝑇Fne𝑡))
4140cbvralvw 3362 . . . . . . . . 9 (∀𝑥𝑆 𝑇Fne𝑥 ↔ ∀𝑡𝑆 𝑇Fne𝑡)
42 fnetg 34076 . . . . . . . . . 10 (𝑇Fne𝑡𝑇 ⊆ (topGen‘𝑡))
4342ralimi 3093 . . . . . . . . 9 (∀𝑡𝑆 𝑇Fne𝑡 → ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
4441, 43sylbi 220 . . . . . . . 8 (∀𝑥𝑆 𝑇Fne𝑥 → ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
4544ad2antll 729 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
46 ssiin 4945 . . . . . . 7 (𝑇 𝑡𝑆 (topGen‘𝑡) ↔ ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
4745, 46sylibr 237 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 𝑡𝑆 (topGen‘𝑡))
4839, 47ssind 4138 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
49 pwexg 5248 . . . . . . . 8 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
50 inex1g 5190 . . . . . . . 8 (𝒫 𝑋 ∈ V → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V)
5149, 50syl 17 . . . . . . 7 (𝑋𝑉 → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V)
5251ad2antrr 726 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V)
53 bastg 21659 . . . . . 6 ((𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5452, 53syl 17 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5548, 54sstrd 3903 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5622, 12isfne4 34071 . . . 4 (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ↔ ( 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∧ 𝑇 ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))))
5735, 55, 56sylanbrc 587 . . 3 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
5857ex 417 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → ((𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥) → 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5932, 58impbid 215 1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wex 1782  wcel 2112  wne 2952  wral 3071  Vcvv 3410  cin 3858  wss 3859  c0 4226  𝒫 cpw 4495   cuni 4799   ciin 4885   class class class wbr 5033  cfv 6336  topGenctg 16762  Fnecfne 34067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6295  df-fun 6338  df-fv 6344  df-topgen 16768  df-fne 34068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator