Proof of Theorem fnemeet2
Step | Hyp | Ref
| Expression |
1 | | riin0 5011 |
. . . . . . . . . 10
⊢ (𝑆 = ∅ → (𝒫
𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) = 𝒫 𝑋) |
2 | 1 | unieqd 4853 |
. . . . . . . . 9
⊢ (𝑆 = ∅ → ∪ (𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) = ∪ 𝒫
𝑋) |
3 | | unipw 5366 |
. . . . . . . . 9
⊢ ∪ 𝒫 𝑋 = 𝑋 |
4 | 2, 3 | eqtr2di 2795 |
. . . . . . . 8
⊢ (𝑆 = ∅ → 𝑋 = ∪
(𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡))) |
5 | 4 | a1i 11 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) → (𝑆 = ∅ → 𝑋 = ∪ (𝒫
𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)))) |
6 | | n0 4280 |
. . . . . . . 8
⊢ (𝑆 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑆) |
7 | | unieq 4850 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → ∪ 𝑦 = ∪
𝑥) |
8 | 7 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑥)) |
9 | 8 | rspccva 3560 |
. . . . . . . . . . . 12
⊢
((∀𝑦 ∈
𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆) → 𝑋 = ∪ 𝑥) |
10 | 9 | 3adant1 1129 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆) → 𝑋 = ∪ 𝑥) |
11 | | fnemeet1 34555 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆) → (𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡))Fne𝑥) |
12 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ∪ (𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) = ∪ (𝒫
𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) |
13 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑥 =
∪ 𝑥 |
14 | 12, 13 | fnebas 34533 |
. . . . . . . . . . . 12
⊢
((𝒫 𝑋 ∩
∩ 𝑡 ∈ 𝑆 (topGen‘𝑡))Fne𝑥 → ∪
(𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) = ∪ 𝑥) |
15 | 11, 14 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆) → ∪
(𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) = ∪ 𝑥) |
16 | 10, 15 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆) → 𝑋 = ∪ (𝒫
𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡))) |
17 | 16 | 3expia 1120 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) → (𝑥 ∈ 𝑆 → 𝑋 = ∪ (𝒫
𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)))) |
18 | 17 | exlimdv 1936 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) → (∃𝑥 𝑥 ∈ 𝑆 → 𝑋 = ∪ (𝒫
𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)))) |
19 | 6, 18 | syl5bi 241 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) → (𝑆 ≠ ∅ → 𝑋 = ∪ (𝒫
𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)))) |
20 | 5, 19 | pm2.61dne 3031 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) → 𝑋 = ∪ (𝒫
𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡))) |
21 | 20 | adantr 481 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ 𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡))) → 𝑋 = ∪ (𝒫
𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡))) |
22 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝑇 =
∪ 𝑇 |
23 | 22, 12 | fnebas 34533 |
. . . . . 6
⊢ (𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) → ∪ 𝑇 = ∪
(𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡))) |
24 | 23 | adantl 482 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ 𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡))) → ∪ 𝑇 = ∪
(𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡))) |
25 | 21, 24 | eqtr4d 2781 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ 𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡))) → 𝑋 = ∪ 𝑇) |
26 | 25 | ex 413 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) → (𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) → 𝑋 = ∪ 𝑇)) |
27 | | fnetr 34540 |
. . . . . . 7
⊢ ((𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) ∧ (𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡))Fne𝑥) → 𝑇Fne𝑥) |
28 | 27 | expcom 414 |
. . . . . 6
⊢
((𝒫 𝑋 ∩
∩ 𝑡 ∈ 𝑆 (topGen‘𝑡))Fne𝑥 → (𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥)) |
29 | 11, 28 | syl 17 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆) → (𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥)) |
30 | 29 | 3expa 1117 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ 𝑥 ∈ 𝑆) → (𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥)) |
31 | 30 | ralrimdva 3106 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) → (𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) → ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) |
32 | 26, 31 | jcad 513 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) → (𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) → (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥))) |
33 | | simprl 768 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → 𝑋 = ∪ 𝑇) |
34 | 20 | adantr 481 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → 𝑋 = ∪ (𝒫
𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡))) |
35 | 33, 34 | eqtr3d 2780 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → ∪ 𝑇 = ∪
(𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡))) |
36 | | eqimss2 3978 |
. . . . . . . 8
⊢ (𝑋 = ∪
𝑇 → ∪ 𝑇
⊆ 𝑋) |
37 | 36 | ad2antrl 725 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → ∪ 𝑇 ⊆ 𝑋) |
38 | | sspwuni 5029 |
. . . . . . 7
⊢ (𝑇 ⊆ 𝒫 𝑋 ↔ ∪ 𝑇
⊆ 𝑋) |
39 | 37, 38 | sylibr 233 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ 𝒫 𝑋) |
40 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → (𝑇Fne𝑥 ↔ 𝑇Fne𝑡)) |
41 | 40 | cbvralvw 3383 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝑆 𝑇Fne𝑥 ↔ ∀𝑡 ∈ 𝑆 𝑇Fne𝑡) |
42 | | fnetg 34534 |
. . . . . . . . . 10
⊢ (𝑇Fne𝑡 → 𝑇 ⊆ (topGen‘𝑡)) |
43 | 42 | ralimi 3087 |
. . . . . . . . 9
⊢
(∀𝑡 ∈
𝑆 𝑇Fne𝑡 → ∀𝑡 ∈ 𝑆 𝑇 ⊆ (topGen‘𝑡)) |
44 | 41, 43 | sylbi 216 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑆 𝑇Fne𝑥 → ∀𝑡 ∈ 𝑆 𝑇 ⊆ (topGen‘𝑡)) |
45 | 44 | ad2antll 726 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → ∀𝑡 ∈ 𝑆 𝑇 ⊆ (topGen‘𝑡)) |
46 | | ssiin 4985 |
. . . . . . 7
⊢ (𝑇 ⊆ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡) ↔ ∀𝑡 ∈ 𝑆 𝑇 ⊆ (topGen‘𝑡)) |
47 | 45, 46 | sylibr 233 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) |
48 | 39, 47 | ssind 4166 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ (𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡))) |
49 | | pwexg 5301 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ V) |
50 | | inex1g 5243 |
. . . . . . . 8
⊢
(𝒫 𝑋 ∈
V → (𝒫 𝑋 ∩
∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) ∈ V) |
51 | 49, 50 | syl 17 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) ∈ V) |
52 | 51 | ad2antrr 723 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → (𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) ∈ V) |
53 | | bastg 22116 |
. . . . . 6
⊢
((𝒫 𝑋 ∩
∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) ∈ V → (𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) ⊆ (topGen‘(𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)))) |
54 | 52, 53 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → (𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) ⊆ (topGen‘(𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)))) |
55 | 48, 54 | sstrd 3931 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ (topGen‘(𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)))) |
56 | 22, 12 | isfne4 34529 |
. . . 4
⊢ (𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) ↔ (∪ 𝑇 = ∪
(𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) ∧ 𝑇 ⊆ (topGen‘(𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡))))) |
57 | 35, 55, 56 | sylanbrc 583 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) ∧ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥)) → 𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡))) |
58 | 57 | ex 413 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) → ((𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥) → 𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)))) |
59 | 32, 58 | impbid 211 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦) → (𝑇Fne(𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) ↔ (𝑋 = ∪ 𝑇 ∧ ∀𝑥 ∈ 𝑆 𝑇Fne𝑥))) |