Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnemeet2 Structured version   Visualization version   GIF version

Theorem fnemeet2 36079
Description: The meet of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnemeet2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)))
Distinct variable groups:   𝑦,𝑡,𝑥,𝑆   𝑡,𝑉,𝑥   𝑡,𝑋,𝑥,𝑦   𝑡,𝑇,𝑥
Allowed substitution hints:   𝑇(𝑦)   𝑉(𝑦)

Proof of Theorem fnemeet2
StepHypRef Expression
1 riin0 5090 . . . . . . . . . 10 (𝑆 = ∅ → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝒫 𝑋)
21unieqd 4926 . . . . . . . . 9 (𝑆 = ∅ → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝒫 𝑋)
3 unipw 5456 . . . . . . . . 9 𝒫 𝑋 = 𝑋
42, 3eqtr2di 2783 . . . . . . . 8 (𝑆 = ∅ → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
54a1i 11 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑆 = ∅ → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
6 n0 4349 . . . . . . . 8 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
7 unieq 4924 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 𝑦 = 𝑥)
87eqeq2d 2737 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑋 = 𝑦𝑋 = 𝑥))
98rspccva 3607 . . . . . . . . . . . 12 ((∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = 𝑥)
1093adant1 1127 . . . . . . . . . . 11 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = 𝑥)
11 fnemeet1 36078 . . . . . . . . . . . 12 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥)
12 eqid 2726 . . . . . . . . . . . . 13 (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))
13 eqid 2726 . . . . . . . . . . . . 13 𝑥 = 𝑥
1412, 13fnebas 36056 . . . . . . . . . . . 12 ((𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥 (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝑥)
1511, 14syl 17 . . . . . . . . . . 11 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝑥)
1610, 15eqtr4d 2769 . . . . . . . . . 10 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
17163expia 1118 . . . . . . . . 9 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑥𝑆𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
1817exlimdv 1929 . . . . . . . 8 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (∃𝑥 𝑥𝑆𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
196, 18biimtrid 241 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑆 ≠ ∅ → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
205, 19pm2.61dne 3018 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
2120adantr 479 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
22 eqid 2726 . . . . . . 7 𝑇 = 𝑇
2322, 12fnebas 36056 . . . . . 6 (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
2423adantl 480 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))) → 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
2521, 24eqtr4d 2769 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))) → 𝑋 = 𝑇)
2625ex 411 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑋 = 𝑇))
27 fnetr 36063 . . . . . . 7 ((𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∧ (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥) → 𝑇Fne𝑥)
2827expcom 412 . . . . . 6 ((𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥 → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥))
2911, 28syl 17 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥))
30293expa 1115 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑥𝑆) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥))
3130ralrimdva 3144 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → ∀𝑥𝑆 𝑇Fne𝑥))
3226, 31jcad 511 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)))
33 simprl 769 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑋 = 𝑇)
3420adantr 479 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
3533, 34eqtr3d 2768 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
36 eqimss2 4039 . . . . . . . 8 (𝑋 = 𝑇 𝑇𝑋)
3736ad2antrl 726 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇𝑋)
38 sspwuni 5108 . . . . . . 7 (𝑇 ⊆ 𝒫 𝑋 𝑇𝑋)
3937, 38sylibr 233 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ 𝒫 𝑋)
40 breq2 5157 . . . . . . . . . 10 (𝑥 = 𝑡 → (𝑇Fne𝑥𝑇Fne𝑡))
4140cbvralvw 3225 . . . . . . . . 9 (∀𝑥𝑆 𝑇Fne𝑥 ↔ ∀𝑡𝑆 𝑇Fne𝑡)
42 fnetg 36057 . . . . . . . . . 10 (𝑇Fne𝑡𝑇 ⊆ (topGen‘𝑡))
4342ralimi 3073 . . . . . . . . 9 (∀𝑡𝑆 𝑇Fne𝑡 → ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
4441, 43sylbi 216 . . . . . . . 8 (∀𝑥𝑆 𝑇Fne𝑥 → ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
4544ad2antll 727 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
46 ssiin 5063 . . . . . . 7 (𝑇 𝑡𝑆 (topGen‘𝑡) ↔ ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
4745, 46sylibr 233 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 𝑡𝑆 (topGen‘𝑡))
4839, 47ssind 4234 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
49 pwexg 5382 . . . . . . . 8 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
50 inex1g 5324 . . . . . . . 8 (𝒫 𝑋 ∈ V → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V)
5149, 50syl 17 . . . . . . 7 (𝑋𝑉 → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V)
5251ad2antrr 724 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V)
53 bastg 22960 . . . . . 6 ((𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5452, 53syl 17 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5548, 54sstrd 3990 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5622, 12isfne4 36052 . . . 4 (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ↔ ( 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∧ 𝑇 ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))))
5735, 55, 56sylanbrc 581 . . 3 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
5857ex 411 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → ((𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥) → 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5932, 58impbid 211 1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wex 1774  wcel 2099  wne 2930  wral 3051  Vcvv 3462  cin 3946  wss 3947  c0 4325  𝒫 cpw 4607   cuni 4913   ciin 5002   class class class wbr 5153  cfv 6554  topGenctg 17452  Fnecfne 36048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6506  df-fun 6556  df-fv 6562  df-topgen 17458  df-fne 36049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator