MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riincld Structured version   Visualization version   GIF version

Theorem riincld 22195
Description: An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
riincld ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem riincld
StepHypRef Expression
1 riin0 5011 . . . 4 (𝐴 = ∅ → (𝑋 𝑥𝐴 𝐵) = 𝑋)
21adantl 482 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑋)
3 clscld.1 . . . . 5 𝑋 = 𝐽
43topcld 22186 . . . 4 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
54ad2antrr 723 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → 𝑋 ∈ (Clsd‘𝐽))
62, 5eqeltrd 2839 . 2 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
74ad2antrr 723 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝑋 ∈ (Clsd‘𝐽))
8 simpr 485 . . . 4 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
9 simplr 766 . . . 4 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
10 iincld 22190 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
118, 9, 10syl2anc 584 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
12 incld 22194 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
137, 11, 12syl2anc 584 . 2 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
146, 13pm2.61dane 3032 1 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cin 3886  c0 4256   cuni 4839   ciin 4925  cfv 6433  Topctop 22042  Clsdccld 22167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-top 22043  df-cld 22170
This theorem is referenced by:  ptcld  22764  csscld  24413
  Copyright terms: Public domain W3C validator