Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riincld | Structured version Visualization version GIF version |
Description: An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
riincld | ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riin0 5015 | . . . 4 ⊢ (𝐴 = ∅ → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) | |
2 | 1 | adantl 481 | . . 3 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) |
3 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | topcld 22167 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
5 | 4 | ad2antrr 722 | . . 3 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → 𝑋 ∈ (Clsd‘𝐽)) |
6 | 2, 5 | eqeltrd 2840 | . 2 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) |
7 | 4 | ad2antrr 722 | . . 3 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝑋 ∈ (Clsd‘𝐽)) |
8 | simpr 484 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
9 | simplr 765 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | |
10 | iincld 22171 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | |
11 | 8, 9, 10 | syl2anc 583 | . . 3 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
12 | incld 22175 | . . 3 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) | |
13 | 7, 11, 12 | syl2anc 583 | . 2 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) |
14 | 6, 13 | pm2.61dane 3033 | 1 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∩ cin 3890 ∅c0 4261 ∪ cuni 4844 ∩ ciin 4930 ‘cfv 6430 Topctop 22023 Clsdccld 22148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fn 6433 df-fv 6438 df-top 22024 df-cld 22151 |
This theorem is referenced by: ptcld 22745 csscld 24394 |
Copyright terms: Public domain | W3C validator |