MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riincld Structured version   Visualization version   GIF version

Theorem riincld 22959
Description: An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
riincld ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem riincld
StepHypRef Expression
1 riin0 5028 . . . 4 (𝐴 = ∅ → (𝑋 𝑥𝐴 𝐵) = 𝑋)
21adantl 481 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑋)
3 clscld.1 . . . . 5 𝑋 = 𝐽
43topcld 22950 . . . 4 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
54ad2antrr 726 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → 𝑋 ∈ (Clsd‘𝐽))
62, 5eqeltrd 2831 . 2 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
74ad2antrr 726 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝑋 ∈ (Clsd‘𝐽))
8 simpr 484 . . . 4 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
9 simplr 768 . . . 4 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
10 iincld 22954 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
118, 9, 10syl2anc 584 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
12 incld 22958 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
137, 11, 12syl2anc 584 . 2 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
146, 13pm2.61dane 3015 1 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  cin 3896  c0 4280   cuni 4856   ciin 4940  cfv 6481  Topctop 22808  Clsdccld 22931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-top 22809  df-cld 22934
This theorem is referenced by:  ptcld  23528  csscld  25176
  Copyright terms: Public domain W3C validator