MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riincld Structured version   Visualization version   GIF version

Theorem riincld 22176
Description: An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
riincld ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem riincld
StepHypRef Expression
1 riin0 5015 . . . 4 (𝐴 = ∅ → (𝑋 𝑥𝐴 𝐵) = 𝑋)
21adantl 481 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑋)
3 clscld.1 . . . . 5 𝑋 = 𝐽
43topcld 22167 . . . 4 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
54ad2antrr 722 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → 𝑋 ∈ (Clsd‘𝐽))
62, 5eqeltrd 2840 . 2 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
74ad2antrr 722 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝑋 ∈ (Clsd‘𝐽))
8 simpr 484 . . . 4 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
9 simplr 765 . . . 4 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
10 iincld 22171 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
118, 9, 10syl2anc 583 . . 3 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
12 incld 22175 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
137, 11, 12syl2anc 583 . 2 (((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
146, 13pm2.61dane 3033 1 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 𝐵) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wne 2944  wral 3065  cin 3890  c0 4261   cuni 4844   ciin 4930  cfv 6430  Topctop 22023  Clsdccld 22148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fn 6433  df-fv 6438  df-top 22024  df-cld 22151
This theorem is referenced by:  ptcld  22745  csscld  24394
  Copyright terms: Public domain W3C validator