| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riincld | Structured version Visualization version GIF version | ||
| Description: An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| riincld | ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riin0 5028 | . . . 4 ⊢ (𝐴 = ∅ → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) |
| 3 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | topcld 22950 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 5 | 4 | ad2antrr 726 | . . 3 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → 𝑋 ∈ (Clsd‘𝐽)) |
| 6 | 2, 5 | eqeltrd 2831 | . 2 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) |
| 7 | 4 | ad2antrr 726 | . . 3 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝑋 ∈ (Clsd‘𝐽)) |
| 8 | simpr 484 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 9 | simplr 768 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | |
| 10 | iincld 22954 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . 3 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
| 12 | incld 22958 | . . 3 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) | |
| 13 | 7, 11, 12 | syl2anc 584 | . 2 ⊢ (((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) |
| 14 | 6, 13 | pm2.61dane 3015 | 1 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∩ cin 3896 ∅c0 4280 ∪ cuni 4856 ∩ ciin 4940 ‘cfv 6481 Topctop 22808 Clsdccld 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-top 22809 df-cld 22934 |
| This theorem is referenced by: ptcld 23528 csscld 25176 |
| Copyright terms: Public domain | W3C validator |