Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2N Structured version   Visualization version   GIF version

Theorem pmapglb2N 37781
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. Allows 𝑆 = ∅. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b 𝐵 = (Base‘𝐾)
pmapglb2.g 𝐺 = (glb‘𝐾)
pmapglb2.a 𝐴 = (Atoms‘𝐾)
pmapglb2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb2N ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐾   𝑥,𝑆
Allowed substitution hints:   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem pmapglb2N
StepHypRef Expression
1 hlop 37372 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 pmapglb2.g . . . . . . . 8 𝐺 = (glb‘𝐾)
3 eqid 2740 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
42, 3glb0N 37203 . . . . . . 7 (𝐾 ∈ OP → (𝐺‘∅) = (1.‘𝐾))
54fveq2d 6775 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = (𝑀‘(1.‘𝐾)))
6 pmapglb2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 pmapglb2.m . . . . . . 7 𝑀 = (pmap‘𝐾)
83, 6, 7pmap1N 37777 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(1.‘𝐾)) = 𝐴)
95, 8eqtrd 2780 . . . . 5 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = 𝐴)
101, 9syl 17 . . . 4 (𝐾 ∈ HL → (𝑀‘(𝐺‘∅)) = 𝐴)
11 2fveq3 6776 . . . . 5 (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝑀‘(𝐺‘∅)))
12 riin0 5016 . . . . 5 (𝑆 = ∅ → (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝐴)
1311, 12eqeq12d 2756 . . . 4 (𝑆 = ∅ → ((𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)) ↔ (𝑀‘(𝐺‘∅)) = 𝐴))
1410, 13syl5ibrcom 246 . . 3 (𝐾 ∈ HL → (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
1514adantr 481 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
16 pmapglb2.b . . . . 5 𝐵 = (Base‘𝐾)
1716, 2, 7pmapglb 37780 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
18 simpr 485 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝑆)
19 simpll 764 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
20 ssel2 3921 . . . . . . . . . . . . 13 ((𝑆𝐵𝑥𝑆) → 𝑥𝐵)
2120adantll 711 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝐵)
2216, 6, 7pmapssat 37769 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑥𝐵) → (𝑀𝑥) ⊆ 𝐴)
2319, 21, 22syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → (𝑀𝑥) ⊆ 𝐴)
2418, 23jca 512 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → (𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴))
2524ex 413 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑥𝑆 → (𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴)))
2625eximdv 1924 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴)))
27 n0 4286 . . . . . . . 8 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
28 df-rex 3072 . . . . . . . 8 (∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 ↔ ∃𝑥(𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴))
2926, 27, 283imtr4g 296 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 ≠ ∅ → ∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴))
30293impia 1116 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → ∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
31 iinss 4991 . . . . . 6 (∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
3230, 31syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
33 sseqin2 4155 . . . . 5 ( 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 ↔ (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝑥𝑆 (𝑀𝑥))
3432, 33sylib 217 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝑥𝑆 (𝑀𝑥))
3517, 34eqtr4d 2783 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
36353expia 1120 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 ≠ ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
3715, 36pm2.61dne 3033 1 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wex 1786  wcel 2110  wne 2945  wrex 3067  cin 3891  wss 3892  c0 4262   ciin 4931  cfv 6432  Basecbs 16910  glbcglb 18026  1.cp1 18140  OPcops 37182  Atomscatm 37273  HLchlt 37360  pmapcpmap 37507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-proset 18011  df-poset 18029  df-lub 18062  df-glb 18063  df-join 18064  df-meet 18065  df-p1 18142  df-lat 18148  df-clat 18215  df-oposet 37186  df-ol 37188  df-oml 37189  df-ats 37277  df-hlat 37361  df-pmap 37514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator