Proof of Theorem pmapglb2N
| Step | Hyp | Ref
| Expression |
| 1 | | hlop 39385 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| 2 | | pmapglb2.g |
. . . . . . . 8
⊢ 𝐺 = (glb‘𝐾) |
| 3 | | eqid 2736 |
. . . . . . . 8
⊢
(1.‘𝐾) =
(1.‘𝐾) |
| 4 | 2, 3 | glb0N 39216 |
. . . . . . 7
⊢ (𝐾 ∈ OP → (𝐺‘∅) =
(1.‘𝐾)) |
| 5 | 4 | fveq2d 6885 |
. . . . . 6
⊢ (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = (𝑀‘(1.‘𝐾))) |
| 6 | | pmapglb2.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 7 | | pmapglb2.m |
. . . . . . 7
⊢ 𝑀 = (pmap‘𝐾) |
| 8 | 3, 6, 7 | pmap1N 39791 |
. . . . . 6
⊢ (𝐾 ∈ OP → (𝑀‘(1.‘𝐾)) = 𝐴) |
| 9 | 5, 8 | eqtrd 2771 |
. . . . 5
⊢ (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = 𝐴) |
| 10 | 1, 9 | syl 17 |
. . . 4
⊢ (𝐾 ∈ HL → (𝑀‘(𝐺‘∅)) = 𝐴) |
| 11 | | 2fveq3 6886 |
. . . . 5
⊢ (𝑆 = ∅ → (𝑀‘(𝐺‘𝑆)) = (𝑀‘(𝐺‘∅))) |
| 12 | | riin0 5063 |
. . . . 5
⊢ (𝑆 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) = 𝐴) |
| 13 | 11, 12 | eqeq12d 2752 |
. . . 4
⊢ (𝑆 = ∅ → ((𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) ↔ (𝑀‘(𝐺‘∅)) = 𝐴)) |
| 14 | 10, 13 | syl5ibrcom 247 |
. . 3
⊢ (𝐾 ∈ HL → (𝑆 = ∅ → (𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)))) |
| 15 | 14 | adantr 480 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝑆 = ∅ → (𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)))) |
| 16 | | pmapglb2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 17 | 16, 2, 7 | pmapglb 39794 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
| 18 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 19 | | simpll 766 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ HL) |
| 20 | | ssel2 3958 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
| 21 | 20 | adantll 714 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
| 22 | 16, 6, 7 | pmapssat 39783 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ 𝐵) → (𝑀‘𝑥) ⊆ 𝐴) |
| 23 | 19, 21, 22 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝑥) ⊆ 𝐴) |
| 24 | 18, 23 | jca 511 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ 𝑆 ∧ (𝑀‘𝑥) ⊆ 𝐴)) |
| 25 | 24 | ex 412 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝑥 ∈ 𝑆 → (𝑥 ∈ 𝑆 ∧ (𝑀‘𝑥) ⊆ 𝐴))) |
| 26 | 25 | eximdv 1917 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (∃𝑥 𝑥 ∈ 𝑆 → ∃𝑥(𝑥 ∈ 𝑆 ∧ (𝑀‘𝑥) ⊆ 𝐴))) |
| 27 | | n0 4333 |
. . . . . . . 8
⊢ (𝑆 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑆) |
| 28 | | df-rex 3062 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝑆 (𝑀‘𝑥) ⊆ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ (𝑀‘𝑥) ⊆ 𝐴)) |
| 29 | 26, 27, 28 | 3imtr4g 296 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝑆 ≠ ∅ → ∃𝑥 ∈ 𝑆 (𝑀‘𝑥) ⊆ 𝐴)) |
| 30 | 29 | 3impia 1117 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → ∃𝑥 ∈ 𝑆 (𝑀‘𝑥) ⊆ 𝐴) |
| 31 | | iinss 5037 |
. . . . . 6
⊢
(∃𝑥 ∈
𝑆 (𝑀‘𝑥) ⊆ 𝐴 → ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥) ⊆ 𝐴) |
| 32 | 30, 31 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥) ⊆ 𝐴) |
| 33 | | sseqin2 4203 |
. . . . 5
⊢ (∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥) ⊆ 𝐴 ↔ (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) = ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
| 34 | 32, 33 | sylib 218 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) = ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
| 35 | 17, 34 | eqtr4d 2774 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥))) |
| 36 | 35 | 3expia 1121 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝑆 ≠ ∅ → (𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)))) |
| 37 | 15, 36 | pm2.61dne 3019 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥))) |