Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2N Structured version   Visualization version   GIF version

Theorem pmapglb2N 39098
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. Allows 𝑆 = βˆ…. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b 𝐡 = (Baseβ€˜πΎ)
pmapglb2.g 𝐺 = (glbβ€˜πΎ)
pmapglb2.a 𝐴 = (Atomsβ€˜πΎ)
pmapglb2.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
pmapglb2N ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝐾   π‘₯,𝑆
Allowed substitution hints:   𝐺(π‘₯)   𝑀(π‘₯)

Proof of Theorem pmapglb2N
StepHypRef Expression
1 hlop 38688 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
2 pmapglb2.g . . . . . . . 8 𝐺 = (glbβ€˜πΎ)
3 eqid 2724 . . . . . . . 8 (1.β€˜πΎ) = (1.β€˜πΎ)
42, 3glb0N 38519 . . . . . . 7 (𝐾 ∈ OP β†’ (πΊβ€˜βˆ…) = (1.β€˜πΎ))
54fveq2d 6885 . . . . . 6 (𝐾 ∈ OP β†’ (π‘€β€˜(πΊβ€˜βˆ…)) = (π‘€β€˜(1.β€˜πΎ)))
6 pmapglb2.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
7 pmapglb2.m . . . . . . 7 𝑀 = (pmapβ€˜πΎ)
83, 6, 7pmap1N 39094 . . . . . 6 (𝐾 ∈ OP β†’ (π‘€β€˜(1.β€˜πΎ)) = 𝐴)
95, 8eqtrd 2764 . . . . 5 (𝐾 ∈ OP β†’ (π‘€β€˜(πΊβ€˜βˆ…)) = 𝐴)
101, 9syl 17 . . . 4 (𝐾 ∈ HL β†’ (π‘€β€˜(πΊβ€˜βˆ…)) = 𝐴)
11 2fveq3 6886 . . . . 5 (𝑆 = βˆ… β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (π‘€β€˜(πΊβ€˜βˆ…)))
12 riin0 5075 . . . . 5 (𝑆 = βˆ… β†’ (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)) = 𝐴)
1311, 12eqeq12d 2740 . . . 4 (𝑆 = βˆ… β†’ ((π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)) ↔ (π‘€β€˜(πΊβ€˜βˆ…)) = 𝐴))
1410, 13syl5ibrcom 246 . . 3 (𝐾 ∈ HL β†’ (𝑆 = βˆ… β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))))
1514adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (𝑆 = βˆ… β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))))
16 pmapglb2.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
1716, 2, 7pmapglb 39097 . . . 4 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) β†’ (π‘€β€˜(πΊβ€˜π‘†)) = ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))
18 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑆)
19 simpll 764 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑆) β†’ 𝐾 ∈ HL)
20 ssel2 3969 . . . . . . . . . . . . 13 ((𝑆 βŠ† 𝐡 ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝐡)
2120adantll 711 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝐡)
2216, 6, 7pmapssat 39086 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ π‘₯ ∈ 𝐡) β†’ (π‘€β€˜π‘₯) βŠ† 𝐴)
2319, 21, 22syl2anc 583 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑆) β†’ (π‘€β€˜π‘₯) βŠ† 𝐴)
2418, 23jca 511 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑆) β†’ (π‘₯ ∈ 𝑆 ∧ (π‘€β€˜π‘₯) βŠ† 𝐴))
2524ex 412 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (π‘₯ ∈ 𝑆 β†’ (π‘₯ ∈ 𝑆 ∧ (π‘€β€˜π‘₯) βŠ† 𝐴)))
2625eximdv 1912 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (βˆƒπ‘₯ π‘₯ ∈ 𝑆 β†’ βˆƒπ‘₯(π‘₯ ∈ 𝑆 ∧ (π‘€β€˜π‘₯) βŠ† 𝐴)))
27 n0 4338 . . . . . . . 8 (𝑆 β‰  βˆ… ↔ βˆƒπ‘₯ π‘₯ ∈ 𝑆)
28 df-rex 3063 . . . . . . . 8 (βˆƒπ‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴 ↔ βˆƒπ‘₯(π‘₯ ∈ 𝑆 ∧ (π‘€β€˜π‘₯) βŠ† 𝐴))
2926, 27, 283imtr4g 296 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (𝑆 β‰  βˆ… β†’ βˆƒπ‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴))
30293impia 1114 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) β†’ βˆƒπ‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴)
31 iinss 5049 . . . . . 6 (βˆƒπ‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴 β†’ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴)
3230, 31syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) β†’ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴)
33 sseqin2 4207 . . . . 5 (∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴 ↔ (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)) = ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))
3432, 33sylib 217 . . . 4 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) β†’ (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)) = ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))
3517, 34eqtr4d 2767 . . 3 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)))
36353expia 1118 . 2 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (𝑆 β‰  βˆ… β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))))
3715, 36pm2.61dne 3020 1 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2932  βˆƒwrex 3062   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4314  βˆ© ciin 4988  β€˜cfv 6533  Basecbs 17142  glbcglb 18264  1.cp1 18378  OPcops 38498  Atomscatm 38589  HLchlt 38676  pmapcpmap 38824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-proset 18249  df-poset 18267  df-lub 18300  df-glb 18301  df-join 18302  df-meet 18303  df-p1 18380  df-lat 18386  df-clat 18453  df-oposet 38502  df-ol 38504  df-oml 38505  df-ats 38593  df-hlat 38677  df-pmap 38831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator