Proof of Theorem pmapglb2N
Step | Hyp | Ref
| Expression |
1 | | hlop 37303 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
2 | | pmapglb2.g |
. . . . . . . 8
⊢ 𝐺 = (glb‘𝐾) |
3 | | eqid 2738 |
. . . . . . . 8
⊢
(1.‘𝐾) =
(1.‘𝐾) |
4 | 2, 3 | glb0N 37134 |
. . . . . . 7
⊢ (𝐾 ∈ OP → (𝐺‘∅) =
(1.‘𝐾)) |
5 | 4 | fveq2d 6760 |
. . . . . 6
⊢ (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = (𝑀‘(1.‘𝐾))) |
6 | | pmapglb2.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
7 | | pmapglb2.m |
. . . . . . 7
⊢ 𝑀 = (pmap‘𝐾) |
8 | 3, 6, 7 | pmap1N 37708 |
. . . . . 6
⊢ (𝐾 ∈ OP → (𝑀‘(1.‘𝐾)) = 𝐴) |
9 | 5, 8 | eqtrd 2778 |
. . . . 5
⊢ (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = 𝐴) |
10 | 1, 9 | syl 17 |
. . . 4
⊢ (𝐾 ∈ HL → (𝑀‘(𝐺‘∅)) = 𝐴) |
11 | | 2fveq3 6761 |
. . . . 5
⊢ (𝑆 = ∅ → (𝑀‘(𝐺‘𝑆)) = (𝑀‘(𝐺‘∅))) |
12 | | riin0 5007 |
. . . . 5
⊢ (𝑆 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) = 𝐴) |
13 | 11, 12 | eqeq12d 2754 |
. . . 4
⊢ (𝑆 = ∅ → ((𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) ↔ (𝑀‘(𝐺‘∅)) = 𝐴)) |
14 | 10, 13 | syl5ibrcom 246 |
. . 3
⊢ (𝐾 ∈ HL → (𝑆 = ∅ → (𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)))) |
15 | 14 | adantr 480 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝑆 = ∅ → (𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)))) |
16 | | pmapglb2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
17 | 16, 2, 7 | pmapglb 37711 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
18 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
19 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ HL) |
20 | | ssel2 3912 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
21 | 20 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
22 | 16, 6, 7 | pmapssat 37700 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ 𝐵) → (𝑀‘𝑥) ⊆ 𝐴) |
23 | 19, 21, 22 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝑥) ⊆ 𝐴) |
24 | 18, 23 | jca 511 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ 𝑆 ∧ (𝑀‘𝑥) ⊆ 𝐴)) |
25 | 24 | ex 412 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝑥 ∈ 𝑆 → (𝑥 ∈ 𝑆 ∧ (𝑀‘𝑥) ⊆ 𝐴))) |
26 | 25 | eximdv 1921 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (∃𝑥 𝑥 ∈ 𝑆 → ∃𝑥(𝑥 ∈ 𝑆 ∧ (𝑀‘𝑥) ⊆ 𝐴))) |
27 | | n0 4277 |
. . . . . . . 8
⊢ (𝑆 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑆) |
28 | | df-rex 3069 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝑆 (𝑀‘𝑥) ⊆ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ (𝑀‘𝑥) ⊆ 𝐴)) |
29 | 26, 27, 28 | 3imtr4g 295 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝑆 ≠ ∅ → ∃𝑥 ∈ 𝑆 (𝑀‘𝑥) ⊆ 𝐴)) |
30 | 29 | 3impia 1115 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → ∃𝑥 ∈ 𝑆 (𝑀‘𝑥) ⊆ 𝐴) |
31 | | iinss 4982 |
. . . . . 6
⊢
(∃𝑥 ∈
𝑆 (𝑀‘𝑥) ⊆ 𝐴 → ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥) ⊆ 𝐴) |
32 | 30, 31 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥) ⊆ 𝐴) |
33 | | sseqin2 4146 |
. . . . 5
⊢ (∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥) ⊆ 𝐴 ↔ (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) = ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
34 | 32, 33 | sylib 217 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) = ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
35 | 17, 34 | eqtr4d 2781 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥))) |
36 | 35 | 3expia 1119 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝑆 ≠ ∅ → (𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥)))) |
37 | 15, 36 | pm2.61dne 3030 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩
𝑥 ∈ 𝑆 (𝑀‘𝑥))) |