Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2N Structured version   Visualization version   GIF version

Theorem pmapglb2N 37785
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. Allows 𝑆 = ∅. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b 𝐵 = (Base‘𝐾)
pmapglb2.g 𝐺 = (glb‘𝐾)
pmapglb2.a 𝐴 = (Atoms‘𝐾)
pmapglb2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb2N ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐾   𝑥,𝑆
Allowed substitution hints:   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem pmapglb2N
StepHypRef Expression
1 hlop 37376 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 pmapglb2.g . . . . . . . 8 𝐺 = (glb‘𝐾)
3 eqid 2738 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
42, 3glb0N 37207 . . . . . . 7 (𝐾 ∈ OP → (𝐺‘∅) = (1.‘𝐾))
54fveq2d 6778 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = (𝑀‘(1.‘𝐾)))
6 pmapglb2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 pmapglb2.m . . . . . . 7 𝑀 = (pmap‘𝐾)
83, 6, 7pmap1N 37781 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(1.‘𝐾)) = 𝐴)
95, 8eqtrd 2778 . . . . 5 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = 𝐴)
101, 9syl 17 . . . 4 (𝐾 ∈ HL → (𝑀‘(𝐺‘∅)) = 𝐴)
11 2fveq3 6779 . . . . 5 (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝑀‘(𝐺‘∅)))
12 riin0 5011 . . . . 5 (𝑆 = ∅ → (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝐴)
1311, 12eqeq12d 2754 . . . 4 (𝑆 = ∅ → ((𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)) ↔ (𝑀‘(𝐺‘∅)) = 𝐴))
1410, 13syl5ibrcom 246 . . 3 (𝐾 ∈ HL → (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
1514adantr 481 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
16 pmapglb2.b . . . . 5 𝐵 = (Base‘𝐾)
1716, 2, 7pmapglb 37784 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
18 simpr 485 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝑆)
19 simpll 764 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
20 ssel2 3916 . . . . . . . . . . . . 13 ((𝑆𝐵𝑥𝑆) → 𝑥𝐵)
2120adantll 711 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝐵)
2216, 6, 7pmapssat 37773 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑥𝐵) → (𝑀𝑥) ⊆ 𝐴)
2319, 21, 22syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → (𝑀𝑥) ⊆ 𝐴)
2418, 23jca 512 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → (𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴))
2524ex 413 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑥𝑆 → (𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴)))
2625eximdv 1920 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴)))
27 n0 4280 . . . . . . . 8 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
28 df-rex 3070 . . . . . . . 8 (∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 ↔ ∃𝑥(𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴))
2926, 27, 283imtr4g 296 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 ≠ ∅ → ∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴))
30293impia 1116 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → ∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
31 iinss 4986 . . . . . 6 (∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
3230, 31syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
33 sseqin2 4149 . . . . 5 ( 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 ↔ (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝑥𝑆 (𝑀𝑥))
3432, 33sylib 217 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝑥𝑆 (𝑀𝑥))
3517, 34eqtr4d 2781 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
36353expia 1120 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 ≠ ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
3715, 36pm2.61dne 3031 1 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  cin 3886  wss 3887  c0 4256   ciin 4925  cfv 6433  Basecbs 16912  glbcglb 18028  1.cp1 18142  OPcops 37186  Atomscatm 37277  HLchlt 37364  pmapcpmap 37511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-ats 37281  df-hlat 37365  df-pmap 37518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator