Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2N Structured version   Visualization version   GIF version

Theorem pmapglb2N 38580
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. Allows 𝑆 = βˆ…. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b 𝐡 = (Baseβ€˜πΎ)
pmapglb2.g 𝐺 = (glbβ€˜πΎ)
pmapglb2.a 𝐴 = (Atomsβ€˜πΎ)
pmapglb2.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
pmapglb2N ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝐾   π‘₯,𝑆
Allowed substitution hints:   𝐺(π‘₯)   𝑀(π‘₯)

Proof of Theorem pmapglb2N
StepHypRef Expression
1 hlop 38170 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
2 pmapglb2.g . . . . . . . 8 𝐺 = (glbβ€˜πΎ)
3 eqid 2733 . . . . . . . 8 (1.β€˜πΎ) = (1.β€˜πΎ)
42, 3glb0N 38001 . . . . . . 7 (𝐾 ∈ OP β†’ (πΊβ€˜βˆ…) = (1.β€˜πΎ))
54fveq2d 6892 . . . . . 6 (𝐾 ∈ OP β†’ (π‘€β€˜(πΊβ€˜βˆ…)) = (π‘€β€˜(1.β€˜πΎ)))
6 pmapglb2.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
7 pmapglb2.m . . . . . . 7 𝑀 = (pmapβ€˜πΎ)
83, 6, 7pmap1N 38576 . . . . . 6 (𝐾 ∈ OP β†’ (π‘€β€˜(1.β€˜πΎ)) = 𝐴)
95, 8eqtrd 2773 . . . . 5 (𝐾 ∈ OP β†’ (π‘€β€˜(πΊβ€˜βˆ…)) = 𝐴)
101, 9syl 17 . . . 4 (𝐾 ∈ HL β†’ (π‘€β€˜(πΊβ€˜βˆ…)) = 𝐴)
11 2fveq3 6893 . . . . 5 (𝑆 = βˆ… β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (π‘€β€˜(πΊβ€˜βˆ…)))
12 riin0 5084 . . . . 5 (𝑆 = βˆ… β†’ (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)) = 𝐴)
1311, 12eqeq12d 2749 . . . 4 (𝑆 = βˆ… β†’ ((π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)) ↔ (π‘€β€˜(πΊβ€˜βˆ…)) = 𝐴))
1410, 13syl5ibrcom 246 . . 3 (𝐾 ∈ HL β†’ (𝑆 = βˆ… β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))))
1514adantr 482 . 2 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (𝑆 = βˆ… β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))))
16 pmapglb2.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
1716, 2, 7pmapglb 38579 . . . 4 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) β†’ (π‘€β€˜(πΊβ€˜π‘†)) = ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))
18 simpr 486 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑆)
19 simpll 766 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑆) β†’ 𝐾 ∈ HL)
20 ssel2 3976 . . . . . . . . . . . . 13 ((𝑆 βŠ† 𝐡 ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝐡)
2120adantll 713 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝐡)
2216, 6, 7pmapssat 38568 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ π‘₯ ∈ 𝐡) β†’ (π‘€β€˜π‘₯) βŠ† 𝐴)
2319, 21, 22syl2anc 585 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑆) β†’ (π‘€β€˜π‘₯) βŠ† 𝐴)
2418, 23jca 513 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑆) β†’ (π‘₯ ∈ 𝑆 ∧ (π‘€β€˜π‘₯) βŠ† 𝐴))
2524ex 414 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (π‘₯ ∈ 𝑆 β†’ (π‘₯ ∈ 𝑆 ∧ (π‘€β€˜π‘₯) βŠ† 𝐴)))
2625eximdv 1921 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (βˆƒπ‘₯ π‘₯ ∈ 𝑆 β†’ βˆƒπ‘₯(π‘₯ ∈ 𝑆 ∧ (π‘€β€˜π‘₯) βŠ† 𝐴)))
27 n0 4345 . . . . . . . 8 (𝑆 β‰  βˆ… ↔ βˆƒπ‘₯ π‘₯ ∈ 𝑆)
28 df-rex 3072 . . . . . . . 8 (βˆƒπ‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴 ↔ βˆƒπ‘₯(π‘₯ ∈ 𝑆 ∧ (π‘€β€˜π‘₯) βŠ† 𝐴))
2926, 27, 283imtr4g 296 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (𝑆 β‰  βˆ… β†’ βˆƒπ‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴))
30293impia 1118 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) β†’ βˆƒπ‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴)
31 iinss 5058 . . . . . 6 (βˆƒπ‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴 β†’ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴)
3230, 31syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) β†’ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴)
33 sseqin2 4214 . . . . 5 (∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯) βŠ† 𝐴 ↔ (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)) = ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))
3432, 33sylib 217 . . . 4 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) β†’ (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)) = ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))
3517, 34eqtr4d 2776 . . 3 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)))
36353expia 1122 . 2 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (𝑆 β‰  βˆ… β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯))))
3715, 36pm2.61dne 3029 1 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐡) β†’ (π‘€β€˜(πΊβ€˜π‘†)) = (𝐴 ∩ ∩ π‘₯ ∈ 𝑆 (π‘€β€˜π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107   β‰  wne 2941  βˆƒwrex 3071   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  βˆ© ciin 4997  β€˜cfv 6540  Basecbs 17140  glbcglb 18259  1.cp1 18373  OPcops 37980  Atomscatm 38071  HLchlt 38158  pmapcpmap 38306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18244  df-poset 18262  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 37984  df-ol 37986  df-oml 37987  df-ats 38075  df-hlat 38159  df-pmap 38313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator