MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringmgm Structured version   Visualization version   GIF version

Theorem ringmgm 20164
Description: A ring is a magma. (Contributed by AV, 31-Jan-2020.)
Assertion
Ref Expression
ringmgm (𝑅 ∈ Ring → 𝑅 ∈ Mgm)

Proof of Theorem ringmgm
StepHypRef Expression
1 ringmnd 20163 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2 mndmgm 18650 . 2 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
31, 2syl 17 1 (𝑅 ∈ Ring → 𝑅 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Mgmcmgm 18547  Mndcmnd 18643  Ringcrg 20153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-ring 20155
This theorem is referenced by:  psdvsca  22084  gsumply1subr  22151
  Copyright terms: Public domain W3C validator