MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringmgm Structured version   Visualization version   GIF version

Theorem ringmgm 19030
Description: A ring is a magma. (Contributed by AV, 31-Jan-2020.)
Assertion
Ref Expression
ringmgm (𝑅 ∈ Ring → 𝑅 ∈ Mgm)

Proof of Theorem ringmgm
StepHypRef Expression
1 ringmnd 19029 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2 mndmgm 17768 . 2 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
31, 2syl 17 1 (𝑅 ∈ Ring → 𝑅 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2050  Mgmcmgm 17708  Mndcmnd 17762  Ringcrg 19020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2751  ax-nul 5067
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-sbc 3683  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-iota 6152  df-fv 6196  df-ov 6979  df-sgrp 17752  df-mnd 17763  df-grp 17894  df-ring 19022
This theorem is referenced by:  gsumply1subr  20105
  Copyright terms: Public domain W3C validator