MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringmgm Structured version   Visualization version   GIF version

Theorem ringmgm 20191
Description: A ring is a magma. (Contributed by AV, 31-Jan-2020.)
Assertion
Ref Expression
ringmgm (𝑅 ∈ Ring → 𝑅 ∈ Mgm)

Proof of Theorem ringmgm
StepHypRef Expression
1 ringmnd 20190 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2 mndmgm 18708 . 2 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
31, 2syl 17 1 (𝑅 ∈ Ring → 𝑅 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Mgmcmgm 18605  Mndcmnd 18701  Ringcrg 20180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-nul 5310
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-ov 7429  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-ring 20182
This theorem is referenced by:  psdvsca  22095  gsumply1subr  22159
  Copyright terms: Public domain W3C validator