| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumply1subr | Structured version Visualization version GIF version | ||
| Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.) |
| Ref | Expression |
|---|---|
| subrgply1.s | ⊢ 𝑆 = (Poly1‘𝑅) |
| subrgply1.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| subrgply1.u | ⊢ 𝑈 = (Poly1‘𝐻) |
| subrgply1.b | ⊢ 𝐵 = (Base‘𝑈) |
| gsumply1subr.s | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| gsumply1subr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumply1subr.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| gsumply1subr | ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumply1subr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | gsumply1subr.s | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 3 | subrgply1.s | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
| 4 | subrgply1.h | . . . . 5 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 5 | subrgply1.u | . . . . 5 ⊢ 𝑈 = (Poly1‘𝐻) | |
| 6 | subrgply1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
| 7 | 3, 4, 5, 6 | subrgply1 22133 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
| 8 | subrgsubg 20480 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆)) | |
| 9 | subgsubm 19045 | . . . 4 ⊢ (𝐵 ∈ (SubGrp‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆)) | |
| 10 | 2, 7, 8, 9 | 4syl 19 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubMnd‘𝑆)) |
| 11 | gsumply1subr.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 12 | eqid 2729 | . . 3 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
| 13 | 1, 10, 11, 12 | gsumsubm 18727 | . 2 ⊢ (𝜑 → (𝑆 Σg 𝐹) = ((𝑆 ↾s 𝐵) Σg 𝐹)) |
| 14 | 11, 1 | fexd 7167 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 15 | ovexd 7388 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐵) ∈ V) | |
| 16 | 5 | fvexi 6840 | . . . 4 ⊢ 𝑈 ∈ V |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
| 18 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 19 | 6 | oveq2i 7364 | . . . . 5 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s (Base‘𝑈)) |
| 20 | 3, 4, 5, 18, 2, 19 | ressply1bas 22129 | . . . 4 ⊢ (𝜑 → (Base‘𝑈) = (Base‘(𝑆 ↾s 𝐵))) |
| 21 | 20 | eqcomd 2735 | . . 3 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝐵)) = (Base‘𝑈)) |
| 22 | 12 | subrgring 20477 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝐵) ∈ Ring) |
| 23 | ringmgm 20147 | . . . 4 ⊢ ((𝑆 ↾s 𝐵) ∈ Ring → (𝑆 ↾s 𝐵) ∈ Mgm) | |
| 24 | 2, 7, 22, 23 | 4syl 19 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐵) ∈ Mgm) |
| 25 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝜑) | |
| 26 | 3, 4, 5, 6, 2, 12 | ressply1bas 22129 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
| 27 | 26 | eqcomd 2735 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝐵)) = 𝐵) |
| 28 | 27 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝜑 → (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ↔ 𝑠 ∈ 𝐵)) |
| 29 | 28 | biimpcd 249 | . . . . . . 7 ⊢ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) → (𝜑 → 𝑠 ∈ 𝐵)) |
| 30 | 29 | adantr 480 | . . . . . 6 ⊢ ((𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵))) → (𝜑 → 𝑠 ∈ 𝐵)) |
| 31 | 30 | impcom 407 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝑠 ∈ 𝐵) |
| 32 | 27 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝜑 → (𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)) ↔ 𝑡 ∈ 𝐵)) |
| 33 | 32 | biimpcd 249 | . . . . . . 7 ⊢ (𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)) → (𝜑 → 𝑡 ∈ 𝐵)) |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵))) → (𝜑 → 𝑡 ∈ 𝐵)) |
| 35 | 34 | impcom 407 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝑡 ∈ 𝐵) |
| 36 | 3, 4, 5, 6, 2, 12 | ressply1add 22130 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑠(+g‘𝑈)𝑡) = (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡)) |
| 37 | 25, 31, 35, 36 | syl12anc 836 | . . . 4 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → (𝑠(+g‘𝑈)𝑡) = (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡)) |
| 38 | 37 | eqcomd 2735 | . . 3 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡) = (𝑠(+g‘𝑈)𝑡)) |
| 39 | 11 | ffund 6660 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 40 | 11 | frnd 6664 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| 41 | 40, 26 | sseqtrd 3974 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘(𝑆 ↾s 𝐵))) |
| 42 | 14, 15, 17, 21, 24, 38, 39, 41 | gsummgmpropd 18573 | . 2 ⊢ (𝜑 → ((𝑆 ↾s 𝐵) Σg 𝐹) = (𝑈 Σg 𝐹)) |
| 43 | 13, 42 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ran crn 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 +gcplusg 17179 Σg cgsu 17362 Mgmcmgm 18530 SubMndcsubmnd 18674 SubGrpcsubg 19017 Ringcrg 20136 SubRingcsubrg 20472 Poly1cpl1 22077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-subrng 20449 df-subrg 20473 df-psr 21834 df-mpl 21836 df-opsr 21838 df-psr1 22080 df-ply1 22082 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |