![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumply1subr | Structured version Visualization version GIF version |
Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.) |
Ref | Expression |
---|---|
subrgply1.s | ⊢ 𝑆 = (Poly1‘𝑅) |
subrgply1.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
subrgply1.u | ⊢ 𝑈 = (Poly1‘𝐻) |
subrgply1.b | ⊢ 𝐵 = (Base‘𝑈) |
gsumply1subr.s | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
gsumply1subr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumply1subr.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
gsumply1subr | ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumply1subr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | gsumply1subr.s | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
3 | subrgply1.s | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
4 | subrgply1.h | . . . . 5 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
5 | subrgply1.u | . . . . 5 ⊢ 𝑈 = (Poly1‘𝐻) | |
6 | subrgply1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
7 | 3, 4, 5, 6 | subrgply1 21747 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
8 | subrgsubg 20362 | . . . . 5 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆)) | |
9 | subgsubm 19023 | . . . . 5 ⊢ (𝐵 ∈ (SubGrp‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆)) |
11 | 2, 7, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubMnd‘𝑆)) |
12 | gsumply1subr.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
13 | eqid 2733 | . . 3 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
14 | 1, 11, 12, 13 | gsumsubm 18713 | . 2 ⊢ (𝜑 → (𝑆 Σg 𝐹) = ((𝑆 ↾s 𝐵) Σg 𝐹)) |
15 | 12, 1 | fexd 7226 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
16 | ovexd 7441 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐵) ∈ V) | |
17 | 5 | fvexi 6903 | . . . 4 ⊢ 𝑈 ∈ V |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
19 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
20 | 6 | oveq2i 7417 | . . . . 5 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s (Base‘𝑈)) |
21 | 3, 4, 5, 19, 2, 20 | ressply1bas 21743 | . . . 4 ⊢ (𝜑 → (Base‘𝑈) = (Base‘(𝑆 ↾s 𝐵))) |
22 | 21 | eqcomd 2739 | . . 3 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝐵)) = (Base‘𝑈)) |
23 | 13 | subrgring 20359 | . . . . 5 ⊢ (𝐵 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝐵) ∈ Ring) |
24 | 7, 23 | syl 17 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (𝑆 ↾s 𝐵) ∈ Ring) |
25 | ringmgm 20061 | . . . 4 ⊢ ((𝑆 ↾s 𝐵) ∈ Ring → (𝑆 ↾s 𝐵) ∈ Mgm) | |
26 | 2, 24, 25 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐵) ∈ Mgm) |
27 | simpl 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝜑) | |
28 | 3, 4, 5, 6, 2, 13 | ressply1bas 21743 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
29 | 28 | eqcomd 2739 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝐵)) = 𝐵) |
30 | 29 | eleq2d 2820 | . . . . . . . 8 ⊢ (𝜑 → (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ↔ 𝑠 ∈ 𝐵)) |
31 | 30 | biimpcd 248 | . . . . . . 7 ⊢ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) → (𝜑 → 𝑠 ∈ 𝐵)) |
32 | 31 | adantr 482 | . . . . . 6 ⊢ ((𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵))) → (𝜑 → 𝑠 ∈ 𝐵)) |
33 | 32 | impcom 409 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝑠 ∈ 𝐵) |
34 | 29 | eleq2d 2820 | . . . . . . . 8 ⊢ (𝜑 → (𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)) ↔ 𝑡 ∈ 𝐵)) |
35 | 34 | biimpcd 248 | . . . . . . 7 ⊢ (𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)) → (𝜑 → 𝑡 ∈ 𝐵)) |
36 | 35 | adantl 483 | . . . . . 6 ⊢ ((𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵))) → (𝜑 → 𝑡 ∈ 𝐵)) |
37 | 36 | impcom 409 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝑡 ∈ 𝐵) |
38 | 3, 4, 5, 6, 2, 13 | ressply1add 21744 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑠(+g‘𝑈)𝑡) = (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡)) |
39 | 27, 33, 37, 38 | syl12anc 836 | . . . 4 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → (𝑠(+g‘𝑈)𝑡) = (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡)) |
40 | 39 | eqcomd 2739 | . . 3 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡) = (𝑠(+g‘𝑈)𝑡)) |
41 | 12 | ffund 6719 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
42 | 12 | frnd 6723 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
43 | 42, 28 | sseqtrd 4022 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘(𝑆 ↾s 𝐵))) |
44 | 15, 16, 18, 22, 26, 40, 41, 43 | gsummgmpropd 18597 | . 2 ⊢ (𝜑 → ((𝑆 ↾s 𝐵) Σg 𝐹) = (𝑈 Σg 𝐹)) |
45 | 14, 44 | eqtrd 2773 | 1 ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ran crn 5677 ⟶wf 6537 ‘cfv 6541 (class class class)co 7406 Basecbs 17141 ↾s cress 17170 +gcplusg 17194 Σg cgsu 17383 Mgmcmgm 18556 SubMndcsubmnd 18667 SubGrpcsubg 18995 Ringcrg 20050 SubRingcsubrg 20352 Poly1cpl1 21693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-of 7667 df-ofr 7668 df-om 7853 df-1st 7972 df-2nd 7973 df-supp 8144 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-er 8700 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-sup 9434 df-oi 9502 df-card 9931 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-fzo 13625 df-seq 13964 df-hash 14288 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17142 df-ress 17171 df-plusg 17207 df-mulr 17208 df-sca 17210 df-vsca 17211 df-ip 17212 df-tset 17213 df-ple 17214 df-ds 17216 df-hom 17218 df-cco 17219 df-0g 17384 df-gsum 17385 df-prds 17390 df-pws 17392 df-mre 17527 df-mrc 17528 df-acs 17530 df-mgm 18558 df-sgrp 18607 df-mnd 18623 df-mhm 18668 df-submnd 18669 df-grp 18819 df-minusg 18820 df-mulg 18946 df-subg 18998 df-ghm 19085 df-cntz 19176 df-cmn 19645 df-abl 19646 df-mgp 19983 df-ur 20000 df-ring 20052 df-subrg 20354 df-psr 21454 df-mpl 21456 df-opsr 21458 df-psr1 21696 df-ply1 21698 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |