| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumply1subr | Structured version Visualization version GIF version | ||
| Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.) |
| Ref | Expression |
|---|---|
| subrgply1.s | ⊢ 𝑆 = (Poly1‘𝑅) |
| subrgply1.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| subrgply1.u | ⊢ 𝑈 = (Poly1‘𝐻) |
| subrgply1.b | ⊢ 𝐵 = (Base‘𝑈) |
| gsumply1subr.s | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| gsumply1subr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumply1subr.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| gsumply1subr | ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumply1subr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | gsumply1subr.s | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 3 | subrgply1.s | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
| 4 | subrgply1.h | . . . . 5 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 5 | subrgply1.u | . . . . 5 ⊢ 𝑈 = (Poly1‘𝐻) | |
| 6 | subrgply1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
| 7 | 3, 4, 5, 6 | subrgply1 22117 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
| 8 | subrgsubg 20486 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆)) | |
| 9 | subgsubm 19080 | . . . 4 ⊢ (𝐵 ∈ (SubGrp‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆)) | |
| 10 | 2, 7, 8, 9 | 4syl 19 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubMnd‘𝑆)) |
| 11 | gsumply1subr.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 12 | eqid 2729 | . . 3 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
| 13 | 1, 10, 11, 12 | gsumsubm 18762 | . 2 ⊢ (𝜑 → (𝑆 Σg 𝐹) = ((𝑆 ↾s 𝐵) Σg 𝐹)) |
| 14 | 11, 1 | fexd 7201 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 15 | ovexd 7422 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐵) ∈ V) | |
| 16 | 5 | fvexi 6872 | . . . 4 ⊢ 𝑈 ∈ V |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
| 18 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 19 | 6 | oveq2i 7398 | . . . . 5 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s (Base‘𝑈)) |
| 20 | 3, 4, 5, 18, 2, 19 | ressply1bas 22113 | . . . 4 ⊢ (𝜑 → (Base‘𝑈) = (Base‘(𝑆 ↾s 𝐵))) |
| 21 | 20 | eqcomd 2735 | . . 3 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝐵)) = (Base‘𝑈)) |
| 22 | 12 | subrgring 20483 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝐵) ∈ Ring) |
| 23 | ringmgm 20153 | . . . 4 ⊢ ((𝑆 ↾s 𝐵) ∈ Ring → (𝑆 ↾s 𝐵) ∈ Mgm) | |
| 24 | 2, 7, 22, 23 | 4syl 19 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐵) ∈ Mgm) |
| 25 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝜑) | |
| 26 | 3, 4, 5, 6, 2, 12 | ressply1bas 22113 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
| 27 | 26 | eqcomd 2735 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝐵)) = 𝐵) |
| 28 | 27 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝜑 → (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ↔ 𝑠 ∈ 𝐵)) |
| 29 | 28 | biimpcd 249 | . . . . . . 7 ⊢ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) → (𝜑 → 𝑠 ∈ 𝐵)) |
| 30 | 29 | adantr 480 | . . . . . 6 ⊢ ((𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵))) → (𝜑 → 𝑠 ∈ 𝐵)) |
| 31 | 30 | impcom 407 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝑠 ∈ 𝐵) |
| 32 | 27 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝜑 → (𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)) ↔ 𝑡 ∈ 𝐵)) |
| 33 | 32 | biimpcd 249 | . . . . . . 7 ⊢ (𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)) → (𝜑 → 𝑡 ∈ 𝐵)) |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵))) → (𝜑 → 𝑡 ∈ 𝐵)) |
| 35 | 34 | impcom 407 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝑡 ∈ 𝐵) |
| 36 | 3, 4, 5, 6, 2, 12 | ressply1add 22114 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑠(+g‘𝑈)𝑡) = (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡)) |
| 37 | 25, 31, 35, 36 | syl12anc 836 | . . . 4 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → (𝑠(+g‘𝑈)𝑡) = (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡)) |
| 38 | 37 | eqcomd 2735 | . . 3 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡) = (𝑠(+g‘𝑈)𝑡)) |
| 39 | 11 | ffund 6692 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 40 | 11 | frnd 6696 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| 41 | 40, 26 | sseqtrd 3983 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘(𝑆 ↾s 𝐵))) |
| 42 | 14, 15, 17, 21, 24, 38, 39, 41 | gsummgmpropd 18608 | . 2 ⊢ (𝜑 → ((𝑆 ↾s 𝐵) Σg 𝐹) = (𝑈 Σg 𝐹)) |
| 43 | 13, 42 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 Σg cgsu 17403 Mgmcmgm 18565 SubMndcsubmnd 18709 SubGrpcsubg 19052 Ringcrg 20142 SubRingcsubrg 20478 Poly1cpl1 22061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrng 20455 df-subrg 20479 df-psr 21818 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-ply1 22066 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |