MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumply1subr Structured version   Visualization version   GIF version

Theorem gsumply1subr 22236
Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
subrgply1.s 𝑆 = (Poly1𝑅)
subrgply1.h 𝐻 = (𝑅s 𝑇)
subrgply1.u 𝑈 = (Poly1𝐻)
subrgply1.b 𝐵 = (Base‘𝑈)
gsumply1subr.s (𝜑𝑇 ∈ (SubRing‘𝑅))
gsumply1subr.a (𝜑𝐴𝑉)
gsumply1subr.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
gsumply1subr (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹))

Proof of Theorem gsumply1subr
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumply1subr.a . . 3 (𝜑𝐴𝑉)
2 gsumply1subr.s . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
3 subrgply1.s . . . . 5 𝑆 = (Poly1𝑅)
4 subrgply1.h . . . . 5 𝐻 = (𝑅s 𝑇)
5 subrgply1.u . . . . 5 𝑈 = (Poly1𝐻)
6 subrgply1.b . . . . 5 𝐵 = (Base‘𝑈)
73, 4, 5, 6subrgply1 22235 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
8 subrgsubg 20578 . . . 4 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆))
9 subgsubm 19167 . . . 4 (𝐵 ∈ (SubGrp‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆))
102, 7, 8, 94syl 19 . . 3 (𝜑𝐵 ∈ (SubMnd‘𝑆))
11 gsumply1subr.f . . 3 (𝜑𝐹:𝐴𝐵)
12 eqid 2736 . . 3 (𝑆s 𝐵) = (𝑆s 𝐵)
131, 10, 11, 12gsumsubm 18849 . 2 (𝜑 → (𝑆 Σg 𝐹) = ((𝑆s 𝐵) Σg 𝐹))
1411, 1fexd 7248 . . 3 (𝜑𝐹 ∈ V)
15 ovexd 7467 . . 3 (𝜑 → (𝑆s 𝐵) ∈ V)
165fvexi 6919 . . . 4 𝑈 ∈ V
1716a1i 11 . . 3 (𝜑𝑈 ∈ V)
18 eqid 2736 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
196oveq2i 7443 . . . . 5 (𝑆s 𝐵) = (𝑆s (Base‘𝑈))
203, 4, 5, 18, 2, 19ressply1bas 22231 . . . 4 (𝜑 → (Base‘𝑈) = (Base‘(𝑆s 𝐵)))
2120eqcomd 2742 . . 3 (𝜑 → (Base‘(𝑆s 𝐵)) = (Base‘𝑈))
2212subrgring 20575 . . . 4 (𝐵 ∈ (SubRing‘𝑆) → (𝑆s 𝐵) ∈ Ring)
23 ringmgm 20242 . . . 4 ((𝑆s 𝐵) ∈ Ring → (𝑆s 𝐵) ∈ Mgm)
242, 7, 22, 234syl 19 . . 3 (𝜑 → (𝑆s 𝐵) ∈ Mgm)
25 simpl 482 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝜑)
263, 4, 5, 6, 2, 12ressply1bas 22231 . . . . . . . . . 10 (𝜑𝐵 = (Base‘(𝑆s 𝐵)))
2726eqcomd 2742 . . . . . . . . 9 (𝜑 → (Base‘(𝑆s 𝐵)) = 𝐵)
2827eleq2d 2826 . . . . . . . 8 (𝜑 → (𝑠 ∈ (Base‘(𝑆s 𝐵)) ↔ 𝑠𝐵))
2928biimpcd 249 . . . . . . 7 (𝑠 ∈ (Base‘(𝑆s 𝐵)) → (𝜑𝑠𝐵))
3029adantr 480 . . . . . 6 ((𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵))) → (𝜑𝑠𝐵))
3130impcom 407 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝑠𝐵)
3227eleq2d 2826 . . . . . . . 8 (𝜑 → (𝑡 ∈ (Base‘(𝑆s 𝐵)) ↔ 𝑡𝐵))
3332biimpcd 249 . . . . . . 7 (𝑡 ∈ (Base‘(𝑆s 𝐵)) → (𝜑𝑡𝐵))
3433adantl 481 . . . . . 6 ((𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵))) → (𝜑𝑡𝐵))
3534impcom 407 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝑡𝐵)
363, 4, 5, 6, 2, 12ressply1add 22232 . . . . 5 ((𝜑 ∧ (𝑠𝐵𝑡𝐵)) → (𝑠(+g𝑈)𝑡) = (𝑠(+g‘(𝑆s 𝐵))𝑡))
3725, 31, 35, 36syl12anc 836 . . . 4 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → (𝑠(+g𝑈)𝑡) = (𝑠(+g‘(𝑆s 𝐵))𝑡))
3837eqcomd 2742 . . 3 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → (𝑠(+g‘(𝑆s 𝐵))𝑡) = (𝑠(+g𝑈)𝑡))
3911ffund 6739 . . 3 (𝜑 → Fun 𝐹)
4011frnd 6743 . . . 4 (𝜑 → ran 𝐹𝐵)
4140, 26sseqtrd 4019 . . 3 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑆s 𝐵)))
4214, 15, 17, 21, 24, 38, 39, 41gsummgmpropd 18695 . 2 (𝜑 → ((𝑆s 𝐵) Σg 𝐹) = (𝑈 Σg 𝐹))
4313, 42eqtrd 2776 1 (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  ran crn 5685  wf 6556  cfv 6560  (class class class)co 7432  Basecbs 17248  s cress 17275  +gcplusg 17298   Σg cgsu 17486  Mgmcmgm 18652  SubMndcsubmnd 18796  SubGrpcsubg 19139  Ringcrg 20231  SubRingcsubrg 20570  Poly1cpl1 22179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-subrng 20547  df-subrg 20571  df-psr 21930  df-mpl 21932  df-opsr 21934  df-psr1 22182  df-ply1 22184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator