![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumply1subr | Structured version Visualization version GIF version |
Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.) |
Ref | Expression |
---|---|
subrgply1.s | ⊢ 𝑆 = (Poly1‘𝑅) |
subrgply1.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
subrgply1.u | ⊢ 𝑈 = (Poly1‘𝐻) |
subrgply1.b | ⊢ 𝐵 = (Base‘𝑈) |
gsumply1subr.s | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
gsumply1subr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumply1subr.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
gsumply1subr | ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumply1subr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | gsumply1subr.s | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
3 | subrgply1.s | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
4 | subrgply1.h | . . . . 5 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
5 | subrgply1.u | . . . . 5 ⊢ 𝑈 = (Poly1‘𝐻) | |
6 | subrgply1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
7 | 3, 4, 5, 6 | subrgply1 19924 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
8 | subrgsubg 19103 | . . . . 5 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆)) | |
9 | subgsubm 17928 | . . . . 5 ⊢ (𝐵 ∈ (SubGrp‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆)) |
11 | 2, 7, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubMnd‘𝑆)) |
12 | gsumply1subr.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
13 | eqid 2800 | . . 3 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
14 | 1, 11, 12, 13 | gsumsubm 17687 | . 2 ⊢ (𝜑 → (𝑆 Σg 𝐹) = ((𝑆 ↾s 𝐵) Σg 𝐹)) |
15 | fex 6719 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
16 | 12, 1, 15 | syl2anc 580 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
17 | ovexd 6913 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐵) ∈ V) | |
18 | 5 | fvexi 6426 | . . . 4 ⊢ 𝑈 ∈ V |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
20 | eqid 2800 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
21 | 6 | oveq2i 6890 | . . . . 5 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s (Base‘𝑈)) |
22 | 3, 4, 5, 20, 2, 21 | ressply1bas 19920 | . . . 4 ⊢ (𝜑 → (Base‘𝑈) = (Base‘(𝑆 ↾s 𝐵))) |
23 | 22 | eqcomd 2806 | . . 3 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝐵)) = (Base‘𝑈)) |
24 | 13 | subrgring 19100 | . . . . 5 ⊢ (𝐵 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝐵) ∈ Ring) |
25 | 7, 24 | syl 17 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (𝑆 ↾s 𝐵) ∈ Ring) |
26 | ringmgm 18872 | . . . 4 ⊢ ((𝑆 ↾s 𝐵) ∈ Ring → (𝑆 ↾s 𝐵) ∈ Mgm) | |
27 | 2, 25, 26 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐵) ∈ Mgm) |
28 | simpl 475 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝜑) | |
29 | 3, 4, 5, 6, 2, 13 | ressply1bas 19920 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
30 | 29 | eqcomd 2806 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝐵)) = 𝐵) |
31 | 30 | eleq2d 2865 | . . . . . . . 8 ⊢ (𝜑 → (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ↔ 𝑠 ∈ 𝐵)) |
32 | 31 | biimpcd 241 | . . . . . . 7 ⊢ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) → (𝜑 → 𝑠 ∈ 𝐵)) |
33 | 32 | adantr 473 | . . . . . 6 ⊢ ((𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵))) → (𝜑 → 𝑠 ∈ 𝐵)) |
34 | 33 | impcom 397 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝑠 ∈ 𝐵) |
35 | 30 | eleq2d 2865 | . . . . . . . 8 ⊢ (𝜑 → (𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)) ↔ 𝑡 ∈ 𝐵)) |
36 | 35 | biimpcd 241 | . . . . . . 7 ⊢ (𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)) → (𝜑 → 𝑡 ∈ 𝐵)) |
37 | 36 | adantl 474 | . . . . . 6 ⊢ ((𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵))) → (𝜑 → 𝑡 ∈ 𝐵)) |
38 | 37 | impcom 397 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝑡 ∈ 𝐵) |
39 | 3, 4, 5, 6, 2, 13 | ressply1add 19921 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑠(+g‘𝑈)𝑡) = (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡)) |
40 | 28, 34, 38, 39 | syl12anc 866 | . . . 4 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → (𝑠(+g‘𝑈)𝑡) = (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡)) |
41 | 40 | eqcomd 2806 | . . 3 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡) = (𝑠(+g‘𝑈)𝑡)) |
42 | 12 | ffund 6261 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
43 | 12 | frnd 6264 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
44 | 43, 29 | sseqtrd 3838 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘(𝑆 ↾s 𝐵))) |
45 | 16, 17, 19, 23, 27, 41, 42, 44 | gsummgmpropd 17589 | . 2 ⊢ (𝜑 → ((𝑆 ↾s 𝐵) Σg 𝐹) = (𝑈 Σg 𝐹)) |
46 | 14, 45 | eqtrd 2834 | 1 ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3386 ran crn 5314 ⟶wf 6098 ‘cfv 6102 (class class class)co 6879 Basecbs 16183 ↾s cress 16184 +gcplusg 16266 Σg cgsu 16415 Mgmcmgm 17554 SubMndcsubmnd 17648 SubGrpcsubg 17900 Ringcrg 18862 SubRingcsubrg 19093 Poly1cpl1 19868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-inf2 8789 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-iin 4714 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-se 5273 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-isom 6111 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-of 7132 df-ofr 7133 df-om 7301 df-1st 7402 df-2nd 7403 df-supp 7534 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-2o 7801 df-oadd 7804 df-er 7983 df-map 8098 df-pm 8099 df-ixp 8150 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-fsupp 8519 df-oi 8658 df-card 9052 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-9 11382 df-n0 11580 df-z 11666 df-dec 11783 df-uz 11930 df-fz 12580 df-fzo 12720 df-seq 13055 df-hash 13370 df-struct 16185 df-ndx 16186 df-slot 16187 df-base 16189 df-sets 16190 df-ress 16191 df-plusg 16279 df-mulr 16280 df-sca 16282 df-vsca 16283 df-tset 16285 df-ple 16286 df-0g 16416 df-gsum 16417 df-mre 16560 df-mrc 16561 df-acs 16563 df-mgm 17556 df-sgrp 17598 df-mnd 17609 df-mhm 17649 df-submnd 17650 df-grp 17740 df-minusg 17741 df-mulg 17856 df-subg 17903 df-ghm 17970 df-cntz 18061 df-cmn 18509 df-abl 18510 df-mgp 18805 df-ur 18817 df-ring 18864 df-subrg 19095 df-psr 19678 df-mpl 19680 df-opsr 19682 df-psr1 19871 df-ply1 19873 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |