MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumply1subr Structured version   Visualization version   GIF version

Theorem gsumply1subr 22125
Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
subrgply1.s 𝑆 = (Poly1𝑅)
subrgply1.h 𝐻 = (𝑅s 𝑇)
subrgply1.u 𝑈 = (Poly1𝐻)
subrgply1.b 𝐵 = (Base‘𝑈)
gsumply1subr.s (𝜑𝑇 ∈ (SubRing‘𝑅))
gsumply1subr.a (𝜑𝐴𝑉)
gsumply1subr.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
gsumply1subr (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹))

Proof of Theorem gsumply1subr
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumply1subr.a . . 3 (𝜑𝐴𝑉)
2 gsumply1subr.s . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
3 subrgply1.s . . . . 5 𝑆 = (Poly1𝑅)
4 subrgply1.h . . . . 5 𝐻 = (𝑅s 𝑇)
5 subrgply1.u . . . . 5 𝑈 = (Poly1𝐻)
6 subrgply1.b . . . . 5 𝐵 = (Base‘𝑈)
73, 4, 5, 6subrgply1 22124 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
8 subrgsubg 20493 . . . 4 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆))
9 subgsubm 19087 . . . 4 (𝐵 ∈ (SubGrp‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆))
102, 7, 8, 94syl 19 . . 3 (𝜑𝐵 ∈ (SubMnd‘𝑆))
11 gsumply1subr.f . . 3 (𝜑𝐹:𝐴𝐵)
12 eqid 2730 . . 3 (𝑆s 𝐵) = (𝑆s 𝐵)
131, 10, 11, 12gsumsubm 18769 . 2 (𝜑 → (𝑆 Σg 𝐹) = ((𝑆s 𝐵) Σg 𝐹))
1411, 1fexd 7204 . . 3 (𝜑𝐹 ∈ V)
15 ovexd 7425 . . 3 (𝜑 → (𝑆s 𝐵) ∈ V)
165fvexi 6875 . . . 4 𝑈 ∈ V
1716a1i 11 . . 3 (𝜑𝑈 ∈ V)
18 eqid 2730 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
196oveq2i 7401 . . . . 5 (𝑆s 𝐵) = (𝑆s (Base‘𝑈))
203, 4, 5, 18, 2, 19ressply1bas 22120 . . . 4 (𝜑 → (Base‘𝑈) = (Base‘(𝑆s 𝐵)))
2120eqcomd 2736 . . 3 (𝜑 → (Base‘(𝑆s 𝐵)) = (Base‘𝑈))
2212subrgring 20490 . . . 4 (𝐵 ∈ (SubRing‘𝑆) → (𝑆s 𝐵) ∈ Ring)
23 ringmgm 20160 . . . 4 ((𝑆s 𝐵) ∈ Ring → (𝑆s 𝐵) ∈ Mgm)
242, 7, 22, 234syl 19 . . 3 (𝜑 → (𝑆s 𝐵) ∈ Mgm)
25 simpl 482 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝜑)
263, 4, 5, 6, 2, 12ressply1bas 22120 . . . . . . . . . 10 (𝜑𝐵 = (Base‘(𝑆s 𝐵)))
2726eqcomd 2736 . . . . . . . . 9 (𝜑 → (Base‘(𝑆s 𝐵)) = 𝐵)
2827eleq2d 2815 . . . . . . . 8 (𝜑 → (𝑠 ∈ (Base‘(𝑆s 𝐵)) ↔ 𝑠𝐵))
2928biimpcd 249 . . . . . . 7 (𝑠 ∈ (Base‘(𝑆s 𝐵)) → (𝜑𝑠𝐵))
3029adantr 480 . . . . . 6 ((𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵))) → (𝜑𝑠𝐵))
3130impcom 407 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝑠𝐵)
3227eleq2d 2815 . . . . . . . 8 (𝜑 → (𝑡 ∈ (Base‘(𝑆s 𝐵)) ↔ 𝑡𝐵))
3332biimpcd 249 . . . . . . 7 (𝑡 ∈ (Base‘(𝑆s 𝐵)) → (𝜑𝑡𝐵))
3433adantl 481 . . . . . 6 ((𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵))) → (𝜑𝑡𝐵))
3534impcom 407 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝑡𝐵)
363, 4, 5, 6, 2, 12ressply1add 22121 . . . . 5 ((𝜑 ∧ (𝑠𝐵𝑡𝐵)) → (𝑠(+g𝑈)𝑡) = (𝑠(+g‘(𝑆s 𝐵))𝑡))
3725, 31, 35, 36syl12anc 836 . . . 4 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → (𝑠(+g𝑈)𝑡) = (𝑠(+g‘(𝑆s 𝐵))𝑡))
3837eqcomd 2736 . . 3 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → (𝑠(+g‘(𝑆s 𝐵))𝑡) = (𝑠(+g𝑈)𝑡))
3911ffund 6695 . . 3 (𝜑 → Fun 𝐹)
4011frnd 6699 . . . 4 (𝜑 → ran 𝐹𝐵)
4140, 26sseqtrd 3986 . . 3 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑆s 𝐵)))
4214, 15, 17, 21, 24, 38, 39, 41gsummgmpropd 18615 . 2 (𝜑 → ((𝑆s 𝐵) Σg 𝐹) = (𝑈 Σg 𝐹))
4313, 42eqtrd 2765 1 (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  ran crn 5642  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  +gcplusg 17227   Σg cgsu 17410  Mgmcmgm 18572  SubMndcsubmnd 18716  SubGrpcsubg 19059  Ringcrg 20149  SubRingcsubrg 20485  Poly1cpl1 22068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrng 20462  df-subrg 20486  df-psr 21825  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-ply1 22073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator