MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumply1subr Structured version   Visualization version   GIF version

Theorem gsumply1subr 21405
Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
subrgply1.s 𝑆 = (Poly1𝑅)
subrgply1.h 𝐻 = (𝑅s 𝑇)
subrgply1.u 𝑈 = (Poly1𝐻)
subrgply1.b 𝐵 = (Base‘𝑈)
gsumply1subr.s (𝜑𝑇 ∈ (SubRing‘𝑅))
gsumply1subr.a (𝜑𝐴𝑉)
gsumply1subr.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
gsumply1subr (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹))

Proof of Theorem gsumply1subr
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumply1subr.a . . 3 (𝜑𝐴𝑉)
2 gsumply1subr.s . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
3 subrgply1.s . . . . 5 𝑆 = (Poly1𝑅)
4 subrgply1.h . . . . 5 𝐻 = (𝑅s 𝑇)
5 subrgply1.u . . . . 5 𝑈 = (Poly1𝐻)
6 subrgply1.b . . . . 5 𝐵 = (Base‘𝑈)
73, 4, 5, 6subrgply1 21404 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
8 subrgsubg 20030 . . . . 5 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆))
9 subgsubm 18777 . . . . 5 (𝐵 ∈ (SubGrp‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆))
108, 9syl 17 . . . 4 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆))
112, 7, 103syl 18 . . 3 (𝜑𝐵 ∈ (SubMnd‘𝑆))
12 gsumply1subr.f . . 3 (𝜑𝐹:𝐴𝐵)
13 eqid 2738 . . 3 (𝑆s 𝐵) = (𝑆s 𝐵)
141, 11, 12, 13gsumsubm 18473 . 2 (𝜑 → (𝑆 Σg 𝐹) = ((𝑆s 𝐵) Σg 𝐹))
1512, 1fexd 7103 . . 3 (𝜑𝐹 ∈ V)
16 ovexd 7310 . . 3 (𝜑 → (𝑆s 𝐵) ∈ V)
175fvexi 6788 . . . 4 𝑈 ∈ V
1817a1i 11 . . 3 (𝜑𝑈 ∈ V)
19 eqid 2738 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
206oveq2i 7286 . . . . 5 (𝑆s 𝐵) = (𝑆s (Base‘𝑈))
213, 4, 5, 19, 2, 20ressply1bas 21400 . . . 4 (𝜑 → (Base‘𝑈) = (Base‘(𝑆s 𝐵)))
2221eqcomd 2744 . . 3 (𝜑 → (Base‘(𝑆s 𝐵)) = (Base‘𝑈))
2313subrgring 20027 . . . . 5 (𝐵 ∈ (SubRing‘𝑆) → (𝑆s 𝐵) ∈ Ring)
247, 23syl 17 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → (𝑆s 𝐵) ∈ Ring)
25 ringmgm 19794 . . . 4 ((𝑆s 𝐵) ∈ Ring → (𝑆s 𝐵) ∈ Mgm)
262, 24, 253syl 18 . . 3 (𝜑 → (𝑆s 𝐵) ∈ Mgm)
27 simpl 483 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝜑)
283, 4, 5, 6, 2, 13ressply1bas 21400 . . . . . . . . . 10 (𝜑𝐵 = (Base‘(𝑆s 𝐵)))
2928eqcomd 2744 . . . . . . . . 9 (𝜑 → (Base‘(𝑆s 𝐵)) = 𝐵)
3029eleq2d 2824 . . . . . . . 8 (𝜑 → (𝑠 ∈ (Base‘(𝑆s 𝐵)) ↔ 𝑠𝐵))
3130biimpcd 248 . . . . . . 7 (𝑠 ∈ (Base‘(𝑆s 𝐵)) → (𝜑𝑠𝐵))
3231adantr 481 . . . . . 6 ((𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵))) → (𝜑𝑠𝐵))
3332impcom 408 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝑠𝐵)
3429eleq2d 2824 . . . . . . . 8 (𝜑 → (𝑡 ∈ (Base‘(𝑆s 𝐵)) ↔ 𝑡𝐵))
3534biimpcd 248 . . . . . . 7 (𝑡 ∈ (Base‘(𝑆s 𝐵)) → (𝜑𝑡𝐵))
3635adantl 482 . . . . . 6 ((𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵))) → (𝜑𝑡𝐵))
3736impcom 408 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝑡𝐵)
383, 4, 5, 6, 2, 13ressply1add 21401 . . . . 5 ((𝜑 ∧ (𝑠𝐵𝑡𝐵)) → (𝑠(+g𝑈)𝑡) = (𝑠(+g‘(𝑆s 𝐵))𝑡))
3927, 33, 37, 38syl12anc 834 . . . 4 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → (𝑠(+g𝑈)𝑡) = (𝑠(+g‘(𝑆s 𝐵))𝑡))
4039eqcomd 2744 . . 3 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → (𝑠(+g‘(𝑆s 𝐵))𝑡) = (𝑠(+g𝑈)𝑡))
4112ffund 6604 . . 3 (𝜑 → Fun 𝐹)
4212frnd 6608 . . . 4 (𝜑 → ran 𝐹𝐵)
4342, 28sseqtrd 3961 . . 3 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑆s 𝐵)))
4415, 16, 18, 22, 26, 40, 41, 43gsummgmpropd 18365 . 2 (𝜑 → ((𝑆s 𝐵) Σg 𝐹) = (𝑈 Σg 𝐹))
4514, 44eqtrd 2778 1 (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  +gcplusg 16962   Σg cgsu 17151  Mgmcmgm 18324  SubMndcsubmnd 18429  SubGrpcsubg 18749  Ringcrg 19783  SubRingcsubrg 20020  Poly1cpl1 21348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-ple 16982  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-psr 21112  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-ply1 21353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator