Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringmnd | Structured version Visualization version GIF version |
Description: A ring is a monoid under addition. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmnd | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 19883 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | 1 | grpmndd 18685 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Mndcmnd 18482 Ringcrg 19878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5250 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-iota 6431 df-fv 6487 df-ov 7340 df-grp 18676 df-ring 19880 |
This theorem is referenced by: ringmgm 19889 gsummulc1 19940 gsummulc2 19941 gsummgp0 19942 prdsringd 19946 pwsco1rhm 20080 lmodvsmmulgdi 20264 cnfldmulg 20736 cnsubmlem 20752 gsumfsum 20771 nn0srg 20774 rge0srg 20775 zring0 20786 re0g 20923 uvcresum 21106 psrlidm 21278 psrridm 21279 mplsubrglem 21316 mplmonmul 21343 evlslem2 21395 evlslem3 21396 evlsgsumadd 21407 mhpmulcl 21445 coe1tmmul2 21553 coe1tmmul 21554 cply1mul 21571 gsummoncoe1 21581 evls1gsumadd 21596 mamudi 21656 mamudir 21657 mamulid 21696 mamurid 21697 mat1dimmul 21731 mat1mhm 21739 dmatmul 21752 scmatscm 21768 1mavmul 21803 mulmarep1gsum1 21828 mdet0pr 21847 m1detdiag 21852 mdetdiag 21854 mdet0 21861 m2detleib 21886 maducoeval2 21895 madugsum 21898 smadiadetlem1a 21918 smadiadetlem3 21923 smadiadet 21925 cpmatmcllem 21973 mat2pmatghm 21985 mat2pmatmul 21986 pmatcollpw3fi1lem1 22041 idpm2idmp 22056 mp2pm2mplem4 22064 pm2mpghm 22071 monmat2matmon 22079 pm2mp 22080 chfacfscmulgsum 22115 chfacfpmmulgsum 22119 cpmadugsumlemF 22131 cayhamlem4 22143 tdeglem4 25330 tdeglem4OLD 25331 tdeglem2 25332 mdegmullem 25349 coe1mul3 25370 plypf1 25479 tayl0 25627 jensen 26244 amgmlem 26245 freshmansdream 31771 suborng 31814 xrge0slmod 31844 drgext0gsca 31977 fedgmullem2 32009 extdg1id 32036 zringnm 32206 rezh 32219 amgm2d 42139 amgm3d 42140 amgm4d 42141 2zrng0 45856 cznrng 45873 mgpsumz 46058 ply1mulgsumlem2 46088 amgmwlem 46866 amgmw2d 46868 |
Copyright terms: Public domain | W3C validator |