Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringmnd | Structured version Visualization version GIF version |
Description: A ring is a monoid under addition. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmnd | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 19703 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | 1 | grpmndd 18504 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Mndcmnd 18300 Ringcrg 19698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-grp 18495 df-ring 19700 |
This theorem is referenced by: ringmgm 19709 gsummulc1 19760 gsummulc2 19761 gsummgp0 19762 prdsringd 19766 pwsco1rhm 19897 lmodvsmmulgdi 20073 cnfldmulg 20542 cnsubmlem 20558 gsumfsum 20577 nn0srg 20580 rge0srg 20581 zring0 20592 re0g 20729 uvcresum 20910 psrlidm 21082 psrridm 21083 mplsubrglem 21120 mplmonmul 21147 evlslem2 21199 evlslem3 21200 evlsgsumadd 21211 mhpmulcl 21249 coe1tmmul2 21357 coe1tmmul 21358 cply1mul 21375 gsummoncoe1 21385 evls1gsumadd 21400 mamudi 21460 mamudir 21461 mamulid 21498 mamurid 21499 mat1dimmul 21533 mat1mhm 21541 dmatmul 21554 scmatscm 21570 1mavmul 21605 mulmarep1gsum1 21630 mdet0pr 21649 m1detdiag 21654 mdetdiag 21656 mdet0 21663 m2detleib 21688 maducoeval2 21697 madugsum 21700 smadiadetlem1a 21720 smadiadetlem3 21725 smadiadet 21727 cpmatmcllem 21775 mat2pmatghm 21787 mat2pmatmul 21788 pmatcollpw3fi1lem1 21843 idpm2idmp 21858 mp2pm2mplem4 21866 pm2mpghm 21873 monmat2matmon 21881 pm2mp 21882 chfacfscmulgsum 21917 chfacfpmmulgsum 21921 cpmadugsumlemF 21933 cayhamlem4 21945 tdeglem4 25129 tdeglem4OLD 25130 tdeglem2 25131 mdegmullem 25148 coe1mul3 25169 plypf1 25278 tayl0 25426 jensen 26043 amgmlem 26044 freshmansdream 31386 suborng 31416 xrge0slmod 31450 drgext0gsca 31581 fedgmullem2 31613 extdg1id 31640 zringnm 31810 rezh 31821 amgm2d 41698 amgm3d 41699 amgm4d 41700 2zrng0 45384 cznrng 45401 mgpsumz 45586 ply1mulgsumlem2 45616 amgmwlem 46392 amgmw2d 46394 |
Copyright terms: Public domain | W3C validator |