Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringmnd | Structured version Visualization version GIF version |
Description: A ring is a monoid under addition. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmnd | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 19797 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | 1 | grpmndd 18598 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Mndcmnd 18394 Ringcrg 19792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-nul 5231 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 df-ov 7287 df-grp 18589 df-ring 19794 |
This theorem is referenced by: ringmgm 19803 gsummulc1 19854 gsummulc2 19855 gsummgp0 19856 prdsringd 19860 pwsco1rhm 19991 lmodvsmmulgdi 20167 cnfldmulg 20639 cnsubmlem 20655 gsumfsum 20674 nn0srg 20677 rge0srg 20678 zring0 20689 re0g 20826 uvcresum 21009 psrlidm 21181 psrridm 21182 mplsubrglem 21219 mplmonmul 21246 evlslem2 21298 evlslem3 21299 evlsgsumadd 21310 mhpmulcl 21348 coe1tmmul2 21456 coe1tmmul 21457 cply1mul 21474 gsummoncoe1 21484 evls1gsumadd 21499 mamudi 21559 mamudir 21560 mamulid 21599 mamurid 21600 mat1dimmul 21634 mat1mhm 21642 dmatmul 21655 scmatscm 21671 1mavmul 21706 mulmarep1gsum1 21731 mdet0pr 21750 m1detdiag 21755 mdetdiag 21757 mdet0 21764 m2detleib 21789 maducoeval2 21798 madugsum 21801 smadiadetlem1a 21821 smadiadetlem3 21826 smadiadet 21828 cpmatmcllem 21876 mat2pmatghm 21888 mat2pmatmul 21889 pmatcollpw3fi1lem1 21944 idpm2idmp 21959 mp2pm2mplem4 21967 pm2mpghm 21974 monmat2matmon 21982 pm2mp 21983 chfacfscmulgsum 22018 chfacfpmmulgsum 22022 cpmadugsumlemF 22034 cayhamlem4 22046 tdeglem4 25233 tdeglem4OLD 25234 tdeglem2 25235 mdegmullem 25252 coe1mul3 25273 plypf1 25382 tayl0 25530 jensen 26147 amgmlem 26148 freshmansdream 31493 suborng 31523 xrge0slmod 31557 drgext0gsca 31688 fedgmullem2 31720 extdg1id 31747 zringnm 31917 rezh 31930 amgm2d 41816 amgm3d 41817 amgm4d 41818 2zrng0 45507 cznrng 45524 mgpsumz 45709 ply1mulgsumlem2 45739 amgmwlem 46517 amgmw2d 46519 |
Copyright terms: Public domain | W3C validator |