Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > crngring | Structured version Visualization version GIF version |
Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
crngring | ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | iscrng 19705 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd)) |
3 | 2 | simplbi 497 | 1 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
Copyright terms: Public domain | W3C validator |