Proof of Theorem incexc
Step | Hyp | Ref
| Expression |
1 | | unifi 8965 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ∪ 𝐴
∈ Fin) |
2 | | hashcl 13923 |
. . . 4
⊢ (∪ 𝐴
∈ Fin → (♯‘∪ 𝐴) ∈
ℕ0) |
3 | 2 | nn0cnd 12152 |
. . 3
⊢ (∪ 𝐴
∈ Fin → (♯‘∪ 𝐴) ∈ ℂ) |
4 | 1, 3 | syl 17 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
(♯‘∪ 𝐴) ∈ ℂ) |
5 | | simpl 486 |
. . . . 5
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin) |
6 | | pwfi 8856 |
. . . . 5
⊢ (𝐴 ∈ Fin ↔ 𝒫
𝐴 ∈
Fin) |
7 | 5, 6 | sylib 221 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝒫
𝐴 ∈
Fin) |
8 | | diffi 8906 |
. . . 4
⊢
(𝒫 𝐴 ∈
Fin → (𝒫 𝐴
∖ {∅}) ∈ Fin) |
9 | 7, 8 | syl 17 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (𝒫
𝐴 ∖ {∅}) ∈
Fin) |
10 | | 1cnd 10828 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 1
∈ ℂ) |
11 | 10 | negcld 11176 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → -1
∈ ℂ) |
12 | | eldifsni 4703 |
. . . . . . . 8
⊢ (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠 ≠ ∅) |
13 | 12 | adantl 485 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
𝑠 ≠
∅) |
14 | | eldifi 4041 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠 ∈ 𝒫 𝐴) |
15 | | elpwi 4522 |
. . . . . . . . . 10
⊢ (𝑠 ∈ 𝒫 𝐴 → 𝑠 ⊆ 𝐴) |
16 | 14, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠 ⊆ 𝐴) |
17 | | ssfi 8851 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Fin ∧ 𝑠 ⊆ 𝐴) → 𝑠 ∈ Fin) |
18 | 5, 16, 17 | syl2an 599 |
. . . . . . . 8
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
𝑠 ∈
Fin) |
19 | | hashnncl 13933 |
. . . . . . . 8
⊢ (𝑠 ∈ Fin →
((♯‘𝑠) ∈
ℕ ↔ 𝑠 ≠
∅)) |
20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
((♯‘𝑠) ∈
ℕ ↔ 𝑠 ≠
∅)) |
21 | 13, 20 | mpbird 260 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
(♯‘𝑠) ∈
ℕ) |
22 | | nnm1nn0 12131 |
. . . . . 6
⊢
((♯‘𝑠)
∈ ℕ → ((♯‘𝑠) − 1) ∈
ℕ0) |
23 | 21, 22 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
((♯‘𝑠) −
1) ∈ ℕ0) |
24 | 11, 23 | expcld 13716 |
. . . 4
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
(-1↑((♯‘𝑠)
− 1)) ∈ ℂ) |
25 | 16 | adantl 485 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
𝑠 ⊆ 𝐴) |
26 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
𝐴 ⊆
Fin) |
27 | 25, 26 | sstrd 3911 |
. . . . . . . 8
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
𝑠 ⊆
Fin) |
28 | | unifi 8965 |
. . . . . . . 8
⊢ ((𝑠 ∈ Fin ∧ 𝑠 ⊆ Fin) → ∪ 𝑠
∈ Fin) |
29 | 18, 27, 28 | syl2anc 587 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
∪ 𝑠 ∈ Fin) |
30 | | intssuni 4881 |
. . . . . . . 8
⊢ (𝑠 ≠ ∅ → ∩ 𝑠
⊆ ∪ 𝑠) |
31 | 13, 30 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
∩ 𝑠 ⊆ ∪ 𝑠) |
32 | 29, 31 | ssfid 8898 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
∩ 𝑠 ∈ Fin) |
33 | | hashcl 13923 |
. . . . . 6
⊢ (∩ 𝑠
∈ Fin → (♯‘∩ 𝑠) ∈
ℕ0) |
34 | 32, 33 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
(♯‘∩ 𝑠) ∈
ℕ0) |
35 | 34 | nn0cnd 12152 |
. . . 4
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
(♯‘∩ 𝑠) ∈ ℂ) |
36 | 24, 35 | mulcld 10853 |
. . 3
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))
∈ ℂ) |
37 | 9, 36 | fsumcl 15297 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
Σ𝑠 ∈ (𝒫
𝐴 ∖
{∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))
∈ ℂ) |
38 | | disjdif 4386 |
. . . . 5
⊢
({∅} ∩ (𝒫 𝐴 ∖ {∅})) =
∅ |
39 | 38 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ({∅}
∩ (𝒫 𝐴 ∖
{∅})) = ∅) |
40 | | 0elpw 5247 |
. . . . . . . 8
⊢ ∅
∈ 𝒫 𝐴 |
41 | | snssi 4721 |
. . . . . . . 8
⊢ (∅
∈ 𝒫 𝐴 →
{∅} ⊆ 𝒫 𝐴) |
42 | 40, 41 | ax-mp 5 |
. . . . . . 7
⊢ {∅}
⊆ 𝒫 𝐴 |
43 | | undif 4396 |
. . . . . . 7
⊢
({∅} ⊆ 𝒫 𝐴 ↔ ({∅} ∪ (𝒫 𝐴 ∖ {∅})) = 𝒫
𝐴) |
44 | 42, 43 | mpbi 233 |
. . . . . 6
⊢
({∅} ∪ (𝒫 𝐴 ∖ {∅})) = 𝒫 𝐴 |
45 | 44 | eqcomi 2746 |
. . . . 5
⊢ 𝒫
𝐴 = ({∅} ∪
(𝒫 𝐴 ∖
{∅})) |
46 | 45 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝒫
𝐴 = ({∅} ∪
(𝒫 𝐴 ∖
{∅}))) |
47 | | 1cnd 10828 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → 1 ∈
ℂ) |
48 | 47 | negcld 11176 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → -1 ∈
ℂ) |
49 | 5, 15, 17 | syl2an 599 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → 𝑠 ∈ Fin) |
50 | | hashcl 13923 |
. . . . . . 7
⊢ (𝑠 ∈ Fin →
(♯‘𝑠) ∈
ℕ0) |
51 | 49, 50 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘𝑠) ∈
ℕ0) |
52 | 48, 51 | expcld 13716 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) →
(-1↑(♯‘𝑠))
∈ ℂ) |
53 | 1 | adantr 484 |
. . . . . . . 8
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → ∪ 𝐴
∈ Fin) |
54 | | inss1 4143 |
. . . . . . . 8
⊢ (∪ 𝐴
∩ ∩ 𝑠) ⊆ ∪ 𝐴 |
55 | | ssfi 8851 |
. . . . . . . 8
⊢ ((∪ 𝐴
∈ Fin ∧ (∪ 𝐴 ∩ ∩ 𝑠) ⊆ ∪ 𝐴)
→ (∪ 𝐴 ∩ ∩ 𝑠) ∈ Fin) |
56 | 53, 54, 55 | sylancl 589 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (∪ 𝐴
∩ ∩ 𝑠) ∈ Fin) |
57 | | hashcl 13923 |
. . . . . . 7
⊢ ((∪ 𝐴
∩ ∩ 𝑠) ∈ Fin → (♯‘(∪ 𝐴
∩ ∩ 𝑠)) ∈
ℕ0) |
58 | 56, 57 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘(∪ 𝐴
∩ ∩ 𝑠)) ∈
ℕ0) |
59 | 58 | nn0cnd 12152 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘(∪ 𝐴
∩ ∩ 𝑠)) ∈ ℂ) |
60 | 52, 59 | mulcld 10853 |
. . . 4
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) →
((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))) ∈ ℂ) |
61 | 39, 46, 7, 60 | fsumsplit 15305 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
Σ𝑠 ∈ 𝒫
𝐴((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))) = (Σ𝑠 ∈ {∅}
((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖
{∅})((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))))) |
62 | | inidm 4133 |
. . . . . . 7
⊢ (∪ 𝐴
∩ ∪ 𝐴) = ∪ 𝐴 |
63 | 62 | fveq2i 6720 |
. . . . . 6
⊢
(♯‘(∪ 𝐴 ∩ ∪ 𝐴)) = (♯‘∪ 𝐴) |
64 | 63 | oveq2i 7224 |
. . . . 5
⊢
((♯‘∪ 𝐴) − (♯‘(∪ 𝐴
∩ ∪ 𝐴))) = ((♯‘∪ 𝐴)
− (♯‘∪ 𝐴)) |
65 | 4 | subidd 11177 |
. . . . 5
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
((♯‘∪ 𝐴) − (♯‘∪ 𝐴))
= 0) |
66 | 64, 65 | syl5eq 2790 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
((♯‘∪ 𝐴) − (♯‘(∪ 𝐴
∩ ∪ 𝐴))) = 0) |
67 | | incexclem 15400 |
. . . . 5
⊢ ((𝐴 ∈ Fin ∧ ∪ 𝐴
∈ Fin) → ((♯‘∪ 𝐴) − (♯‘(∪ 𝐴
∩ ∪ 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠)))) |
68 | 1, 67 | syldan 594 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
((♯‘∪ 𝐴) − (♯‘(∪ 𝐴
∩ ∪ 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠)))) |
69 | 66, 68 | eqtr3d 2779 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 0 =
Σ𝑠 ∈ 𝒫
𝐴((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠)))) |
70 | 4, 37 | negsubd 11195 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
((♯‘∪ 𝐴) + -Σ𝑠 ∈ (𝒫 𝐴 ∖
{∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠)))
= ((♯‘∪ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖
{∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠)))) |
71 | | 0ex 5200 |
. . . . . . 7
⊢ ∅
∈ V |
72 | | 1cnd 10828 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 1 ∈
ℂ) |
73 | 72, 4 | mulcld 10853 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1 ·
(♯‘∪ 𝐴)) ∈ ℂ) |
74 | | fveq2 6717 |
. . . . . . . . . . . 12
⊢ (𝑠 = ∅ →
(♯‘𝑠) =
(♯‘∅)) |
75 | | hash0 13934 |
. . . . . . . . . . . 12
⊢
(♯‘∅) = 0 |
76 | 74, 75 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝑠 = ∅ →
(♯‘𝑠) =
0) |
77 | 76 | oveq2d 7229 |
. . . . . . . . . 10
⊢ (𝑠 = ∅ →
(-1↑(♯‘𝑠))
= (-1↑0)) |
78 | | neg1cn 11944 |
. . . . . . . . . . 11
⊢ -1 ∈
ℂ |
79 | | exp0 13639 |
. . . . . . . . . . 11
⊢ (-1
∈ ℂ → (-1↑0) = 1) |
80 | 78, 79 | ax-mp 5 |
. . . . . . . . . 10
⊢
(-1↑0) = 1 |
81 | 77, 80 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝑠 = ∅ →
(-1↑(♯‘𝑠))
= 1) |
82 | | rint0 4901 |
. . . . . . . . . 10
⊢ (𝑠 = ∅ → (∪ 𝐴
∩ ∩ 𝑠) = ∪ 𝐴) |
83 | 82 | fveq2d 6721 |
. . . . . . . . 9
⊢ (𝑠 = ∅ →
(♯‘(∪ 𝐴 ∩ ∩ 𝑠)) = (♯‘∪ 𝐴)) |
84 | 81, 83 | oveq12d 7231 |
. . . . . . . 8
⊢ (𝑠 = ∅ →
((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))) = (1 · (♯‘∪ 𝐴))) |
85 | 84 | sumsn 15310 |
. . . . . . 7
⊢ ((∅
∈ V ∧ (1 · (♯‘∪ 𝐴)) ∈ ℂ) →
Σ𝑠 ∈ {∅}
((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))) = (1 · (♯‘∪ 𝐴))) |
86 | 71, 73, 85 | sylancr 590 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
Σ𝑠 ∈ {∅}
((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))) = (1 · (♯‘∪ 𝐴))) |
87 | 4 | mulid2d 10851 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1 ·
(♯‘∪ 𝐴)) = (♯‘∪ 𝐴)) |
88 | 86, 87 | eqtr2d 2778 |
. . . . 5
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
(♯‘∪ 𝐴) = Σ𝑠 ∈ {∅}
((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠)))) |
89 | 9, 36 | fsumneg 15351 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
Σ𝑠 ∈ (𝒫
𝐴 ∖
{∅})-((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))
= -Σ𝑠 ∈
(𝒫 𝐴 ∖
{∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))) |
90 | | expm1t 13663 |
. . . . . . . . . . 11
⊢ ((-1
∈ ℂ ∧ (♯‘𝑠) ∈ ℕ) →
(-1↑(♯‘𝑠))
= ((-1↑((♯‘𝑠) − 1)) · -1)) |
91 | 11, 21, 90 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
(-1↑(♯‘𝑠))
= ((-1↑((♯‘𝑠) − 1)) · -1)) |
92 | 24, 11 | mulcomd 10854 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
((-1↑((♯‘𝑠) − 1)) · -1) = (-1 ·
(-1↑((♯‘𝑠)
− 1)))) |
93 | 24 | mulm1d 11284 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1
· (-1↑((♯‘𝑠) − 1))) =
-(-1↑((♯‘𝑠) − 1))) |
94 | 91, 92, 93 | 3eqtrd 2781 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
(-1↑(♯‘𝑠))
= -(-1↑((♯‘𝑠) − 1))) |
95 | 25 | unissd 4829 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
∪ 𝑠 ⊆ ∪ 𝐴) |
96 | 31, 95 | sstrd 3911 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
∩ 𝑠 ⊆ ∪ 𝐴) |
97 | | sseqin2 4130 |
. . . . . . . . . . 11
⊢ (∩ 𝑠
⊆ ∪ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝑠) =
∩ 𝑠) |
98 | 96, 97 | sylib 221 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
(∪ 𝐴 ∩ ∩ 𝑠) = ∩
𝑠) |
99 | 98 | fveq2d 6721 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
(♯‘(∪ 𝐴 ∩ ∩ 𝑠)) = (♯‘∩ 𝑠)) |
100 | 94, 99 | oveq12d 7231 |
. . . . . . . 8
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))) = (-(-1↑((♯‘𝑠) − 1)) ·
(♯‘∩ 𝑠))) |
101 | 24, 35 | mulneg1d 11285 |
. . . . . . . 8
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
(-(-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))
= -((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))) |
102 | 100, 101 | eqtr2d 2778 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) →
-((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))
= ((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠)))) |
103 | 102 | sumeq2dv 15267 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
Σ𝑠 ∈ (𝒫
𝐴 ∖
{∅})-((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))
= Σ𝑠 ∈
(𝒫 𝐴 ∖
{∅})((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠)))) |
104 | 89, 103 | eqtr3d 2779 |
. . . . 5
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
-Σ𝑠 ∈ (𝒫
𝐴 ∖
{∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))
= Σ𝑠 ∈
(𝒫 𝐴 ∖
{∅})((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠)))) |
105 | 88, 104 | oveq12d 7231 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
((♯‘∪ 𝐴) + -Σ𝑠 ∈ (𝒫 𝐴 ∖
{∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠)))
= (Σ𝑠 ∈
{∅} ((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖
{∅})((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))))) |
106 | 70, 105 | eqtr3d 2779 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
((♯‘∪ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖
{∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠)))
= (Σ𝑠 ∈
{∅} ((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖
{∅})((-1↑(♯‘𝑠)) · (♯‘(∪ 𝐴
∩ ∩ 𝑠))))) |
107 | 61, 69, 106 | 3eqtr4rd 2788 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
((♯‘∪ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖
{∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠)))
= 0) |
108 | 4, 37, 107 | subeq0d 11197 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
(♯‘∪ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖
{∅})((-1↑((♯‘𝑠) − 1)) · (♯‘∩ 𝑠))) |