MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexc Structured version   Visualization version   GIF version

Theorem incexc 15649
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. This is Metamath 100 proof #96. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexc ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
Distinct variable group:   𝐴,𝑠

Proof of Theorem incexc
StepHypRef Expression
1 unifi 9211 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
2 hashcl 14176 . . . 4 ( 𝐴 ∈ Fin → (♯‘ 𝐴) ∈ ℕ0)
32nn0cnd 12401 . . 3 ( 𝐴 ∈ Fin → (♯‘ 𝐴) ∈ ℂ)
41, 3syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) ∈ ℂ)
5 simpl 484 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6 pwfi 9048 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
75, 6sylib 217 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝒫 𝐴 ∈ Fin)
8 diffi 9049 . . . 4 (𝒫 𝐴 ∈ Fin → (𝒫 𝐴 ∖ {∅}) ∈ Fin)
97, 8syl 17 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (𝒫 𝐴 ∖ {∅}) ∈ Fin)
10 1cnd 11076 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 1 ∈ ℂ)
1110negcld 11425 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → -1 ∈ ℂ)
12 eldifsni 4742 . . . . . . . 8 (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠 ≠ ∅)
1312adantl 483 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ≠ ∅)
14 eldifi 4078 . . . . . . . . . 10 (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠 ∈ 𝒫 𝐴)
15 elpwi 4559 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
1614, 15syl 17 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠𝐴)
17 ssfi 9043 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑠𝐴) → 𝑠 ∈ Fin)
185, 16, 17syl2an 597 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ∈ Fin)
19 hashnncl 14186 . . . . . . . 8 (𝑠 ∈ Fin → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2018, 19syl 17 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2113, 20mpbird 257 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘𝑠) ∈ ℕ)
22 nnm1nn0 12380 . . . . . 6 ((♯‘𝑠) ∈ ℕ → ((♯‘𝑠) − 1) ∈ ℕ0)
2321, 22syl 17 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((♯‘𝑠) − 1) ∈ ℕ0)
2411, 23expcld 13970 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1↑((♯‘𝑠) − 1)) ∈ ℂ)
2516adantl 483 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠𝐴)
26 simplr 767 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝐴 ⊆ Fin)
2725, 26sstrd 3946 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ⊆ Fin)
28 unifi 9211 . . . . . . . 8 ((𝑠 ∈ Fin ∧ 𝑠 ⊆ Fin) → 𝑠 ∈ Fin)
2918, 27, 28syl2anc 585 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ∈ Fin)
30 intssuni 4923 . . . . . . . 8 (𝑠 ≠ ∅ → 𝑠 𝑠)
3113, 30syl 17 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 𝑠)
3229, 31ssfid 9137 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ∈ Fin)
33 hashcl 14176 . . . . . 6 ( 𝑠 ∈ Fin → (♯‘ 𝑠) ∈ ℕ0)
3432, 33syl 17 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘ 𝑠) ∈ ℕ0)
3534nn0cnd 12401 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘ 𝑠) ∈ ℂ)
3624, 35mulcld 11101 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
379, 36fsumcl 15545 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
38 disjdif 4423 . . . . 5 ({∅} ∩ (𝒫 𝐴 ∖ {∅})) = ∅
3938a1i 11 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ({∅} ∩ (𝒫 𝐴 ∖ {∅})) = ∅)
40 0elpw 5303 . . . . . . . 8 ∅ ∈ 𝒫 𝐴
41 snssi 4760 . . . . . . . 8 (∅ ∈ 𝒫 𝐴 → {∅} ⊆ 𝒫 𝐴)
4240, 41ax-mp 5 . . . . . . 7 {∅} ⊆ 𝒫 𝐴
43 undif 4433 . . . . . . 7 ({∅} ⊆ 𝒫 𝐴 ↔ ({∅} ∪ (𝒫 𝐴 ∖ {∅})) = 𝒫 𝐴)
4442, 43mpbi 229 . . . . . 6 ({∅} ∪ (𝒫 𝐴 ∖ {∅})) = 𝒫 𝐴
4544eqcomi 2746 . . . . 5 𝒫 𝐴 = ({∅} ∪ (𝒫 𝐴 ∖ {∅}))
4645a1i 11 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝒫 𝐴 = ({∅} ∪ (𝒫 𝐴 ∖ {∅})))
47 1cnd 11076 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → 1 ∈ ℂ)
4847negcld 11425 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → -1 ∈ ℂ)
495, 15, 17syl2an 597 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → 𝑠 ∈ Fin)
50 hashcl 14176 . . . . . . 7 (𝑠 ∈ Fin → (♯‘𝑠) ∈ ℕ0)
5149, 50syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘𝑠) ∈ ℕ0)
5248, 51expcld 13970 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (-1↑(♯‘𝑠)) ∈ ℂ)
531adantr 482 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → 𝐴 ∈ Fin)
54 inss1 4180 . . . . . . . 8 ( 𝐴 𝑠) ⊆ 𝐴
55 ssfi 9043 . . . . . . . 8 (( 𝐴 ∈ Fin ∧ ( 𝐴 𝑠) ⊆ 𝐴) → ( 𝐴 𝑠) ∈ Fin)
5653, 54, 55sylancl 587 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → ( 𝐴 𝑠) ∈ Fin)
57 hashcl 14176 . . . . . . 7 (( 𝐴 𝑠) ∈ Fin → (♯‘( 𝐴 𝑠)) ∈ ℕ0)
5856, 57syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘( 𝐴 𝑠)) ∈ ℕ0)
5958nn0cnd 12401 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘( 𝐴 𝑠)) ∈ ℂ)
6052, 59mulcld 11101 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) ∈ ℂ)
6139, 46, 7, 60fsumsplit 15553 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠)))))
62 inidm 4170 . . . . . . 7 ( 𝐴 𝐴) = 𝐴
6362fveq2i 6833 . . . . . 6 (♯‘( 𝐴 𝐴)) = (♯‘ 𝐴)
6463oveq2i 7353 . . . . 5 ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = ((♯‘ 𝐴) − (♯‘ 𝐴))
654subidd 11426 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − (♯‘ 𝐴)) = 0)
6664, 65eqtrid 2789 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = 0)
67 incexclem 15648 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
681, 67syldan 592 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
6966, 68eqtr3d 2779 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 0 = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
704, 37negsubd 11444 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) + -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = ((♯‘ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))))
71 0ex 5256 . . . . . . 7 ∅ ∈ V
72 1cnd 11076 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 1 ∈ ℂ)
7372, 4mulcld 11101 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1 · (♯‘ 𝐴)) ∈ ℂ)
74 fveq2 6830 . . . . . . . . . . . 12 (𝑠 = ∅ → (♯‘𝑠) = (♯‘∅))
75 hash0 14187 . . . . . . . . . . . 12 (♯‘∅) = 0
7674, 75eqtrdi 2793 . . . . . . . . . . 11 (𝑠 = ∅ → (♯‘𝑠) = 0)
7776oveq2d 7358 . . . . . . . . . 10 (𝑠 = ∅ → (-1↑(♯‘𝑠)) = (-1↑0))
78 neg1cn 12193 . . . . . . . . . . 11 -1 ∈ ℂ
79 exp0 13892 . . . . . . . . . . 11 (-1 ∈ ℂ → (-1↑0) = 1)
8078, 79ax-mp 5 . . . . . . . . . 10 (-1↑0) = 1
8177, 80eqtrdi 2793 . . . . . . . . 9 (𝑠 = ∅ → (-1↑(♯‘𝑠)) = 1)
82 rint0 4943 . . . . . . . . . 10 (𝑠 = ∅ → ( 𝐴 𝑠) = 𝐴)
8382fveq2d 6834 . . . . . . . . 9 (𝑠 = ∅ → (♯‘( 𝐴 𝑠)) = (♯‘ 𝐴))
8481, 83oveq12d 7360 . . . . . . . 8 (𝑠 = ∅ → ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (1 · (♯‘ 𝐴)))
8584sumsn 15558 . . . . . . 7 ((∅ ∈ V ∧ (1 · (♯‘ 𝐴)) ∈ ℂ) → Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (1 · (♯‘ 𝐴)))
8671, 73, 85sylancr 588 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (1 · (♯‘ 𝐴)))
874mulid2d 11099 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1 · (♯‘ 𝐴)) = (♯‘ 𝐴))
8886, 87eqtr2d 2778 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
899, 36fsumneg 15599 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})-((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
90 expm1t 13917 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (♯‘𝑠) ∈ ℕ) → (-1↑(♯‘𝑠)) = ((-1↑((♯‘𝑠) − 1)) · -1))
9111, 21, 90syl2anc 585 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1↑(♯‘𝑠)) = ((-1↑((♯‘𝑠) − 1)) · -1))
9224, 11mulcomd 11102 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((-1↑((♯‘𝑠) − 1)) · -1) = (-1 · (-1↑((♯‘𝑠) − 1))))
9324mulm1d 11533 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1 · (-1↑((♯‘𝑠) − 1))) = -(-1↑((♯‘𝑠) − 1)))
9491, 92, 933eqtrd 2781 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1↑(♯‘𝑠)) = -(-1↑((♯‘𝑠) − 1)))
9525unissd 4867 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 𝐴)
9631, 95sstrd 3946 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 𝐴)
97 sseqin2 4167 . . . . . . . . . . 11 ( 𝑠 𝐴 ↔ ( 𝐴 𝑠) = 𝑠)
9896, 97sylib 217 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ( 𝐴 𝑠) = 𝑠)
9998fveq2d 6834 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘( 𝐴 𝑠)) = (♯‘ 𝑠))
10094, 99oveq12d 7360 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (-(-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
10124, 35mulneg1d 11534 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-(-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = -((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
102100, 101eqtr2d 2778 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → -((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
103102sumeq2dv 15515 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})-((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
10489, 103eqtr3d 2779 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
10588, 104oveq12d 7360 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) + -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = (Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠)))))
10670, 105eqtr3d 2779 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = (Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠)))))
10761, 69, 1063eqtr4rd 2788 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = 0)
1084, 37, 107subeq0d 11446 1 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wne 2941  Vcvv 3442  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4274  𝒫 cpw 4552  {csn 4578   cuni 4857   cint 4899  cfv 6484  (class class class)co 7342  Fincfn 8809  cc 10975  0cc0 10977  1c1 10978   + caddc 10980   · cmul 10982  cmin 11311  -cneg 11312  cn 12079  0cn0 12339  cexp 13888  chash 14150  Σcsu 15497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-inf2 9503  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-oadd 8376  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-sup 9304  df-oi 9372  df-dju 9763  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-n0 12340  df-z 12426  df-uz 12689  df-rp 12837  df-fz 13346  df-fzo 13489  df-seq 13828  df-exp 13889  df-hash 14151  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-clim 15297  df-sum 15498
This theorem is referenced by:  incexc2  15650
  Copyright terms: Public domain W3C validator