MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexc Structured version   Visualization version   GIF version

Theorem incexc 15549
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. This is Metamath 100 proof #96. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexc ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
Distinct variable group:   𝐴,𝑠

Proof of Theorem incexc
StepHypRef Expression
1 unifi 9108 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
2 hashcl 14071 . . . 4 ( 𝐴 ∈ Fin → (♯‘ 𝐴) ∈ ℕ0)
32nn0cnd 12295 . . 3 ( 𝐴 ∈ Fin → (♯‘ 𝐴) ∈ ℂ)
41, 3syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) ∈ ℂ)
5 simpl 483 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6 pwfi 8961 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
75, 6sylib 217 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝒫 𝐴 ∈ Fin)
8 diffi 8962 . . . 4 (𝒫 𝐴 ∈ Fin → (𝒫 𝐴 ∖ {∅}) ∈ Fin)
97, 8syl 17 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (𝒫 𝐴 ∖ {∅}) ∈ Fin)
10 1cnd 10970 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 1 ∈ ℂ)
1110negcld 11319 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → -1 ∈ ℂ)
12 eldifsni 4723 . . . . . . . 8 (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠 ≠ ∅)
1312adantl 482 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ≠ ∅)
14 eldifi 4061 . . . . . . . . . 10 (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠 ∈ 𝒫 𝐴)
15 elpwi 4542 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
1614, 15syl 17 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠𝐴)
17 ssfi 8956 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑠𝐴) → 𝑠 ∈ Fin)
185, 16, 17syl2an 596 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ∈ Fin)
19 hashnncl 14081 . . . . . . . 8 (𝑠 ∈ Fin → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2018, 19syl 17 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2113, 20mpbird 256 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘𝑠) ∈ ℕ)
22 nnm1nn0 12274 . . . . . 6 ((♯‘𝑠) ∈ ℕ → ((♯‘𝑠) − 1) ∈ ℕ0)
2321, 22syl 17 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((♯‘𝑠) − 1) ∈ ℕ0)
2411, 23expcld 13864 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1↑((♯‘𝑠) − 1)) ∈ ℂ)
2516adantl 482 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠𝐴)
26 simplr 766 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝐴 ⊆ Fin)
2725, 26sstrd 3931 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ⊆ Fin)
28 unifi 9108 . . . . . . . 8 ((𝑠 ∈ Fin ∧ 𝑠 ⊆ Fin) → 𝑠 ∈ Fin)
2918, 27, 28syl2anc 584 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ∈ Fin)
30 intssuni 4901 . . . . . . . 8 (𝑠 ≠ ∅ → 𝑠 𝑠)
3113, 30syl 17 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 𝑠)
3229, 31ssfid 9042 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ∈ Fin)
33 hashcl 14071 . . . . . 6 ( 𝑠 ∈ Fin → (♯‘ 𝑠) ∈ ℕ0)
3432, 33syl 17 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘ 𝑠) ∈ ℕ0)
3534nn0cnd 12295 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘ 𝑠) ∈ ℂ)
3624, 35mulcld 10995 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
379, 36fsumcl 15445 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
38 disjdif 4405 . . . . 5 ({∅} ∩ (𝒫 𝐴 ∖ {∅})) = ∅
3938a1i 11 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ({∅} ∩ (𝒫 𝐴 ∖ {∅})) = ∅)
40 0elpw 5278 . . . . . . . 8 ∅ ∈ 𝒫 𝐴
41 snssi 4741 . . . . . . . 8 (∅ ∈ 𝒫 𝐴 → {∅} ⊆ 𝒫 𝐴)
4240, 41ax-mp 5 . . . . . . 7 {∅} ⊆ 𝒫 𝐴
43 undif 4415 . . . . . . 7 ({∅} ⊆ 𝒫 𝐴 ↔ ({∅} ∪ (𝒫 𝐴 ∖ {∅})) = 𝒫 𝐴)
4442, 43mpbi 229 . . . . . 6 ({∅} ∪ (𝒫 𝐴 ∖ {∅})) = 𝒫 𝐴
4544eqcomi 2747 . . . . 5 𝒫 𝐴 = ({∅} ∪ (𝒫 𝐴 ∖ {∅}))
4645a1i 11 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝒫 𝐴 = ({∅} ∪ (𝒫 𝐴 ∖ {∅})))
47 1cnd 10970 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → 1 ∈ ℂ)
4847negcld 11319 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → -1 ∈ ℂ)
495, 15, 17syl2an 596 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → 𝑠 ∈ Fin)
50 hashcl 14071 . . . . . . 7 (𝑠 ∈ Fin → (♯‘𝑠) ∈ ℕ0)
5149, 50syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘𝑠) ∈ ℕ0)
5248, 51expcld 13864 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (-1↑(♯‘𝑠)) ∈ ℂ)
531adantr 481 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → 𝐴 ∈ Fin)
54 inss1 4162 . . . . . . . 8 ( 𝐴 𝑠) ⊆ 𝐴
55 ssfi 8956 . . . . . . . 8 (( 𝐴 ∈ Fin ∧ ( 𝐴 𝑠) ⊆ 𝐴) → ( 𝐴 𝑠) ∈ Fin)
5653, 54, 55sylancl 586 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → ( 𝐴 𝑠) ∈ Fin)
57 hashcl 14071 . . . . . . 7 (( 𝐴 𝑠) ∈ Fin → (♯‘( 𝐴 𝑠)) ∈ ℕ0)
5856, 57syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘( 𝐴 𝑠)) ∈ ℕ0)
5958nn0cnd 12295 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘( 𝐴 𝑠)) ∈ ℂ)
6052, 59mulcld 10995 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) ∈ ℂ)
6139, 46, 7, 60fsumsplit 15453 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠)))))
62 inidm 4152 . . . . . . 7 ( 𝐴 𝐴) = 𝐴
6362fveq2i 6777 . . . . . 6 (♯‘( 𝐴 𝐴)) = (♯‘ 𝐴)
6463oveq2i 7286 . . . . 5 ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = ((♯‘ 𝐴) − (♯‘ 𝐴))
654subidd 11320 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − (♯‘ 𝐴)) = 0)
6664, 65eqtrid 2790 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = 0)
67 incexclem 15548 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
681, 67syldan 591 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
6966, 68eqtr3d 2780 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 0 = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
704, 37negsubd 11338 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) + -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = ((♯‘ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))))
71 0ex 5231 . . . . . . 7 ∅ ∈ V
72 1cnd 10970 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 1 ∈ ℂ)
7372, 4mulcld 10995 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1 · (♯‘ 𝐴)) ∈ ℂ)
74 fveq2 6774 . . . . . . . . . . . 12 (𝑠 = ∅ → (♯‘𝑠) = (♯‘∅))
75 hash0 14082 . . . . . . . . . . . 12 (♯‘∅) = 0
7674, 75eqtrdi 2794 . . . . . . . . . . 11 (𝑠 = ∅ → (♯‘𝑠) = 0)
7776oveq2d 7291 . . . . . . . . . 10 (𝑠 = ∅ → (-1↑(♯‘𝑠)) = (-1↑0))
78 neg1cn 12087 . . . . . . . . . . 11 -1 ∈ ℂ
79 exp0 13786 . . . . . . . . . . 11 (-1 ∈ ℂ → (-1↑0) = 1)
8078, 79ax-mp 5 . . . . . . . . . 10 (-1↑0) = 1
8177, 80eqtrdi 2794 . . . . . . . . 9 (𝑠 = ∅ → (-1↑(♯‘𝑠)) = 1)
82 rint0 4921 . . . . . . . . . 10 (𝑠 = ∅ → ( 𝐴 𝑠) = 𝐴)
8382fveq2d 6778 . . . . . . . . 9 (𝑠 = ∅ → (♯‘( 𝐴 𝑠)) = (♯‘ 𝐴))
8481, 83oveq12d 7293 . . . . . . . 8 (𝑠 = ∅ → ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (1 · (♯‘ 𝐴)))
8584sumsn 15458 . . . . . . 7 ((∅ ∈ V ∧ (1 · (♯‘ 𝐴)) ∈ ℂ) → Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (1 · (♯‘ 𝐴)))
8671, 73, 85sylancr 587 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (1 · (♯‘ 𝐴)))
874mulid2d 10993 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1 · (♯‘ 𝐴)) = (♯‘ 𝐴))
8886, 87eqtr2d 2779 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
899, 36fsumneg 15499 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})-((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
90 expm1t 13811 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (♯‘𝑠) ∈ ℕ) → (-1↑(♯‘𝑠)) = ((-1↑((♯‘𝑠) − 1)) · -1))
9111, 21, 90syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1↑(♯‘𝑠)) = ((-1↑((♯‘𝑠) − 1)) · -1))
9224, 11mulcomd 10996 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((-1↑((♯‘𝑠) − 1)) · -1) = (-1 · (-1↑((♯‘𝑠) − 1))))
9324mulm1d 11427 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1 · (-1↑((♯‘𝑠) − 1))) = -(-1↑((♯‘𝑠) − 1)))
9491, 92, 933eqtrd 2782 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1↑(♯‘𝑠)) = -(-1↑((♯‘𝑠) − 1)))
9525unissd 4849 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 𝐴)
9631, 95sstrd 3931 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 𝐴)
97 sseqin2 4149 . . . . . . . . . . 11 ( 𝑠 𝐴 ↔ ( 𝐴 𝑠) = 𝑠)
9896, 97sylib 217 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ( 𝐴 𝑠) = 𝑠)
9998fveq2d 6778 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘( 𝐴 𝑠)) = (♯‘ 𝑠))
10094, 99oveq12d 7293 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (-(-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
10124, 35mulneg1d 11428 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-(-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = -((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
102100, 101eqtr2d 2779 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → -((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
103102sumeq2dv 15415 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})-((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
10489, 103eqtr3d 2780 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
10588, 104oveq12d 7293 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) + -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = (Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠)))))
10670, 105eqtr3d 2780 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = (Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠)))))
10761, 69, 1063eqtr4rd 2789 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = 0)
1084, 37, 107subeq0d 11340 1 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839   cint 4879  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  cn 11973  0cn0 12233  cexp 13782  chash 14044  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  incexc2  15550
  Copyright terms: Public domain W3C validator