MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexc Structured version   Visualization version   GIF version

Theorem incexc 14775
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. This is Metamath 100 proof #96. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexc ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
Distinct variable group:   𝐴,𝑠

Proof of Theorem incexc
StepHypRef Expression
1 unifi 8414 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
2 hashcl 13348 . . . 4 ( 𝐴 ∈ Fin → (♯‘ 𝐴) ∈ ℕ0)
32nn0cnd 11559 . . 3 ( 𝐴 ∈ Fin → (♯‘ 𝐴) ∈ ℂ)
41, 3syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) ∈ ℂ)
5 simpl 468 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6 pwfi 8420 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
75, 6sylib 208 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝒫 𝐴 ∈ Fin)
8 diffi 8351 . . . 4 (𝒫 𝐴 ∈ Fin → (𝒫 𝐴 ∖ {∅}) ∈ Fin)
97, 8syl 17 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (𝒫 𝐴 ∖ {∅}) ∈ Fin)
10 1cnd 10261 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 1 ∈ ℂ)
1110negcld 10584 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → -1 ∈ ℂ)
12 eldifsni 4458 . . . . . . . 8 (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠 ≠ ∅)
1312adantl 467 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ≠ ∅)
14 eldifi 3883 . . . . . . . . . 10 (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠 ∈ 𝒫 𝐴)
15 elpwi 4308 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
1614, 15syl 17 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑠𝐴)
17 ssfi 8339 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑠𝐴) → 𝑠 ∈ Fin)
185, 16, 17syl2an 583 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ∈ Fin)
19 hashnncl 13358 . . . . . . . 8 (𝑠 ∈ Fin → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2018, 19syl 17 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2113, 20mpbird 247 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘𝑠) ∈ ℕ)
22 nnm1nn0 11540 . . . . . 6 ((♯‘𝑠) ∈ ℕ → ((♯‘𝑠) − 1) ∈ ℕ0)
2321, 22syl 17 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((♯‘𝑠) − 1) ∈ ℕ0)
2411, 23expcld 13214 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1↑((♯‘𝑠) − 1)) ∈ ℂ)
2516adantl 467 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠𝐴)
26 simplr 752 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝐴 ⊆ Fin)
2725, 26sstrd 3762 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ⊆ Fin)
28 unifi 8414 . . . . . . . 8 ((𝑠 ∈ Fin ∧ 𝑠 ⊆ Fin) → 𝑠 ∈ Fin)
2918, 27, 28syl2anc 573 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ∈ Fin)
30 intssuni 4634 . . . . . . . 8 (𝑠 ≠ ∅ → 𝑠 𝑠)
3113, 30syl 17 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 𝑠)
32 ssfi 8339 . . . . . . 7 (( 𝑠 ∈ Fin ∧ 𝑠 𝑠) → 𝑠 ∈ Fin)
3329, 31, 32syl2anc 573 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 ∈ Fin)
34 hashcl 13348 . . . . . 6 ( 𝑠 ∈ Fin → (♯‘ 𝑠) ∈ ℕ0)
3533, 34syl 17 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘ 𝑠) ∈ ℕ0)
3635nn0cnd 11559 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘ 𝑠) ∈ ℂ)
3724, 36mulcld 10265 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
389, 37fsumcl 14671 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
39 disjdif 4183 . . . . 5 ({∅} ∩ (𝒫 𝐴 ∖ {∅})) = ∅
4039a1i 11 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ({∅} ∩ (𝒫 𝐴 ∖ {∅})) = ∅)
41 0elpw 4966 . . . . . . . 8 ∅ ∈ 𝒫 𝐴
42 snssi 4475 . . . . . . . 8 (∅ ∈ 𝒫 𝐴 → {∅} ⊆ 𝒫 𝐴)
4341, 42ax-mp 5 . . . . . . 7 {∅} ⊆ 𝒫 𝐴
44 undif 4192 . . . . . . 7 ({∅} ⊆ 𝒫 𝐴 ↔ ({∅} ∪ (𝒫 𝐴 ∖ {∅})) = 𝒫 𝐴)
4543, 44mpbi 220 . . . . . 6 ({∅} ∪ (𝒫 𝐴 ∖ {∅})) = 𝒫 𝐴
4645eqcomi 2780 . . . . 5 𝒫 𝐴 = ({∅} ∪ (𝒫 𝐴 ∖ {∅}))
4746a1i 11 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝒫 𝐴 = ({∅} ∪ (𝒫 𝐴 ∖ {∅})))
48 1cnd 10261 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → 1 ∈ ℂ)
4948negcld 10584 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → -1 ∈ ℂ)
505, 15, 17syl2an 583 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → 𝑠 ∈ Fin)
51 hashcl 13348 . . . . . . 7 (𝑠 ∈ Fin → (♯‘𝑠) ∈ ℕ0)
5250, 51syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘𝑠) ∈ ℕ0)
5349, 52expcld 13214 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (-1↑(♯‘𝑠)) ∈ ℂ)
541adantr 466 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → 𝐴 ∈ Fin)
55 inss1 3981 . . . . . . . 8 ( 𝐴 𝑠) ⊆ 𝐴
56 ssfi 8339 . . . . . . . 8 (( 𝐴 ∈ Fin ∧ ( 𝐴 𝑠) ⊆ 𝐴) → ( 𝐴 𝑠) ∈ Fin)
5754, 55, 56sylancl 574 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → ( 𝐴 𝑠) ∈ Fin)
58 hashcl 13348 . . . . . . 7 (( 𝐴 𝑠) ∈ Fin → (♯‘( 𝐴 𝑠)) ∈ ℕ0)
5957, 58syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘( 𝐴 𝑠)) ∈ ℕ0)
6059nn0cnd 11559 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → (♯‘( 𝐴 𝑠)) ∈ ℂ)
6153, 60mulcld 10265 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ 𝒫 𝐴) → ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) ∈ ℂ)
6240, 47, 7, 61fsumsplit 14678 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠)))))
63 inidm 3971 . . . . . . 7 ( 𝐴 𝐴) = 𝐴
6463fveq2i 6336 . . . . . 6 (♯‘( 𝐴 𝐴)) = (♯‘ 𝐴)
6564oveq2i 6806 . . . . 5 ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = ((♯‘ 𝐴) − (♯‘ 𝐴))
664subidd 10585 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − (♯‘ 𝐴)) = 0)
6765, 66syl5eq 2817 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = 0)
68 incexclem 14774 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
691, 68syldan 579 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − (♯‘( 𝐴 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
7067, 69eqtr3d 2807 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 0 = Σ𝑠 ∈ 𝒫 𝐴((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
714, 38negsubd 10603 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) + -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = ((♯‘ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))))
72 0ex 4925 . . . . . . 7 ∅ ∈ V
73 1cnd 10261 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 1 ∈ ℂ)
7473, 4mulcld 10265 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1 · (♯‘ 𝐴)) ∈ ℂ)
75 fveq2 6333 . . . . . . . . . . . 12 (𝑠 = ∅ → (♯‘𝑠) = (♯‘∅))
76 hash0 13359 . . . . . . . . . . . 12 (♯‘∅) = 0
7775, 76syl6eq 2821 . . . . . . . . . . 11 (𝑠 = ∅ → (♯‘𝑠) = 0)
7877oveq2d 6811 . . . . . . . . . 10 (𝑠 = ∅ → (-1↑(♯‘𝑠)) = (-1↑0))
79 neg1cn 11329 . . . . . . . . . . 11 -1 ∈ ℂ
80 exp0 13070 . . . . . . . . . . 11 (-1 ∈ ℂ → (-1↑0) = 1)
8179, 80ax-mp 5 . . . . . . . . . 10 (-1↑0) = 1
8278, 81syl6eq 2821 . . . . . . . . 9 (𝑠 = ∅ → (-1↑(♯‘𝑠)) = 1)
83 rint0 4652 . . . . . . . . . 10 (𝑠 = ∅ → ( 𝐴 𝑠) = 𝐴)
8483fveq2d 6337 . . . . . . . . 9 (𝑠 = ∅ → (♯‘( 𝐴 𝑠)) = (♯‘ 𝐴))
8582, 84oveq12d 6813 . . . . . . . 8 (𝑠 = ∅ → ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (1 · (♯‘ 𝐴)))
8685sumsn 14682 . . . . . . 7 ((∅ ∈ V ∧ (1 · (♯‘ 𝐴)) ∈ ℂ) → Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (1 · (♯‘ 𝐴)))
8772, 74, 86sylancr 575 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (1 · (♯‘ 𝐴)))
884mulid2d 10263 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1 · (♯‘ 𝐴)) = (♯‘ 𝐴))
8987, 88eqtr2d 2806 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
909, 37fsumneg 14725 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})-((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
91 expm1t 13094 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (♯‘𝑠) ∈ ℕ) → (-1↑(♯‘𝑠)) = ((-1↑((♯‘𝑠) − 1)) · -1))
9211, 21, 91syl2anc 573 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1↑(♯‘𝑠)) = ((-1↑((♯‘𝑠) − 1)) · -1))
9324, 11mulcomd 10266 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((-1↑((♯‘𝑠) − 1)) · -1) = (-1 · (-1↑((♯‘𝑠) − 1))))
9424mulm1d 10687 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1 · (-1↑((♯‘𝑠) − 1))) = -(-1↑((♯‘𝑠) − 1)))
9592, 93, 943eqtrd 2809 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-1↑(♯‘𝑠)) = -(-1↑((♯‘𝑠) − 1)))
9625unissd 4599 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 𝐴)
9731, 96sstrd 3762 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → 𝑠 𝐴)
98 sseqin2 3968 . . . . . . . . . . 11 ( 𝑠 𝐴 ↔ ( 𝐴 𝑠) = 𝑠)
9997, 98sylib 208 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ( 𝐴 𝑠) = 𝑠)
10099fveq2d 6337 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (♯‘( 𝐴 𝑠)) = (♯‘ 𝑠))
10195, 100oveq12d 6813 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) = (-(-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
10224, 36mulneg1d 10688 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → (-(-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = -((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
103101, 102eqtr2d 2806 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑠 ∈ (𝒫 𝐴 ∖ {∅})) → -((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
104103sumeq2dv 14640 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})-((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
10590, 104eqtr3d 2807 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))))
10689, 105oveq12d 6813 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) + -Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = (Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠)))))
10771, 106eqtr3d 2807 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = (Σ𝑠 ∈ {∅} ((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠))) + Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑(♯‘𝑠)) · (♯‘( 𝐴 𝑠)))))
10862, 70, 1073eqtr4rd 2816 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ((♯‘ 𝐴) − Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠))) = 0)
1094, 38, 108subeq0d 10605 1 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  cdif 3720  cun 3721  cin 3722  wss 3723  c0 4063  𝒫 cpw 4298  {csn 4317   cuni 4575   cint 4612  cfv 6030  (class class class)co 6795  Fincfn 8112  cc 10139  0cc0 10141  1c1 10142   + caddc 10144   · cmul 10146  cmin 10471  -cneg 10472  cn 11225  0cn0 11498  cexp 13066  chash 13320  Σcsu 14623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-2o 7717  df-oadd 7720  df-er 7899  df-map 8014  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-sup 8507  df-oi 8574  df-card 8968  df-cda 9195  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624
This theorem is referenced by:  incexc2  14776
  Copyright terms: Public domain W3C validator