| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotabiia | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 3412 analog.) (Contributed by NM, 16-Jan-2012.) |
| Ref | Expression |
|---|---|
| riotabiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riotabiia | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ V = V | |
| 2 | riotabiia.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((V = V ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) |
| 4 | 3 | riotabidva 7366 | . 2 ⊢ (V = V → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ℩crio 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 df-iota 6467 df-riota 7347 |
| This theorem is referenced by: riotaxfrd 7381 lubfval 18316 glbfval 18329 odulub 18373 oduglb 18375 cnlnadjlem5 32007 cdj3lem3 32374 cdj3lem3b 32376 lshpkrlem1 39110 cdleme25cv 40359 cdlemk35 40913 |
| Copyright terms: Public domain | W3C validator |