Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotabiia | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 3396 analog.) (Contributed by NM, 16-Jan-2012.) |
Ref | Expression |
---|---|
riotabiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riotabiia | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ V = V | |
2 | riotabiia.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((V = V ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) |
4 | 3 | riotabidva 7232 | . 2 ⊢ (V = V → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-iota 6376 df-riota 7212 |
This theorem is referenced by: riotaxfrd 7247 lubfval 17983 glbfval 17996 odulub 18040 oduglb 18042 cnlnadjlem5 30334 cdj3lem3 30701 cdj3lem3b 30703 lshpkrlem1 37051 cdleme25cv 38299 cdlemk35 38853 |
Copyright terms: Public domain | W3C validator |