MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotabiia Structured version   Visualization version   GIF version

Theorem riotabiia 6900
Description: Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 3381 analog.) (Contributed by NM, 16-Jan-2012.)
Hypothesis
Ref Expression
riotabiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
riotabiia (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)

Proof of Theorem riotabiia
StepHypRef Expression
1 eqid 2778 . 2 V = V
2 riotabiia.1 . . . 4 (𝑥𝐴 → (𝜑𝜓))
32adantl 475 . . 3 ((V = V ∧ 𝑥𝐴) → (𝜑𝜓))
43riotabidva 6899 . 2 (V = V → (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓))
51, 4ax-mp 5 1 (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2107  Vcvv 3398  crio 6882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-rex 3096  df-uni 4672  df-iota 6099  df-riota 6883
This theorem is referenced by:  riotaxfrd  6914  lubfval  17364  glbfval  17377  oduglb  17525  odulub  17527  cnlnadjlem5  29502  cdj3lem3  29869  cdj3lem3b  29871  lshpkrlem1  35266  cdleme25cv  36514  cdlemk35  37068
  Copyright terms: Public domain W3C validator