MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotabiia Structured version   Visualization version   GIF version

Theorem riotabiia 7323
Description: Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 3399 analog.) (Contributed by NM, 16-Jan-2012.)
Hypothesis
Ref Expression
riotabiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
riotabiia (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)

Proof of Theorem riotabiia
StepHypRef Expression
1 eqid 2731 . 2 V = V
2 riotabiia.1 . . . 4 (𝑥𝐴 → (𝜑𝜓))
32adantl 481 . . 3 ((V = V ∧ 𝑥𝐴) → (𝜑𝜓))
43riotabidva 7322 . 2 (V = V → (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓))
51, 4ax-mp 5 1 (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  crio 7302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-uni 4857  df-iota 6437  df-riota 7303
This theorem is referenced by:  riotaxfrd  7337  lubfval  18254  glbfval  18267  odulub  18311  oduglb  18313  cnlnadjlem5  32051  cdj3lem3  32418  cdj3lem3b  32420  lshpkrlem1  39208  cdleme25cv  40456  cdlemk35  41010
  Copyright terms: Public domain W3C validator