MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotabiia Structured version   Visualization version   GIF version

Theorem riotabiia 7335
Description: Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 3412 analog.) (Contributed by NM, 16-Jan-2012.)
Hypothesis
Ref Expression
riotabiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
riotabiia (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)

Proof of Theorem riotabiia
StepHypRef Expression
1 eqid 2737 . 2 V = V
2 riotabiia.1 . . . 4 (𝑥𝐴 → (𝜑𝜓))
32adantl 483 . . 3 ((V = V ∧ 𝑥𝐴) → (𝜑𝜓))
43riotabidva 7334 . 2 (V = V → (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓))
51, 4ax-mp 5 1 (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  Vcvv 3446  crio 7313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3448  df-in 3918  df-ss 3928  df-uni 4867  df-iota 6449  df-riota 7314
This theorem is referenced by:  riotaxfrd  7349  lubfval  18240  glbfval  18253  odulub  18297  oduglb  18299  cnlnadjlem5  31016  cdj3lem3  31383  cdj3lem3b  31385  lshpkrlem1  37575  cdleme25cv  38824  cdlemk35  39378
  Copyright terms: Public domain W3C validator