![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotabiia | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 3436 analog.) (Contributed by NM, 16-Jan-2012.) |
Ref | Expression |
---|---|
riotabiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riotabiia | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 ⊢ V = V | |
2 | riotabiia.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | adantl 482 | . . 3 ⊢ ((V = V ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) |
4 | 3 | riotabidva 7387 | . 2 ⊢ (V = V → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ℩crio 7366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-uni 4909 df-iota 6495 df-riota 7367 |
This theorem is referenced by: riotaxfrd 7402 lubfval 18305 glbfval 18318 odulub 18362 oduglb 18364 cnlnadjlem5 31362 cdj3lem3 31729 cdj3lem3b 31731 lshpkrlem1 38066 cdleme25cv 39315 cdlemk35 39869 |
Copyright terms: Public domain | W3C validator |