Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cnlnadjlem5 | Structured version Visualization version GIF version |
Description: Lemma for cnlnadji 29972. 𝐹 is an adjoint of 𝑇 (later, we will show it is unique). (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp |
cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp |
cnlnadjlem.3 | ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) |
cnlnadjlem.4 | ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) |
cnlnadjlem.5 | ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) |
Ref | Expression |
---|---|
cnlnadjlem5 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2919 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2919 | . . . 4 ⊢ Ⅎ𝑦 ℋ | |
3 | nfcv 2919 | . . . . . 6 ⊢ Ⅎ𝑦𝑓 | |
4 | nfcv 2919 | . . . . . 6 ⊢ Ⅎ𝑦 ·ih | |
5 | cnlnadjlem.5 | . . . . . . . 8 ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) | |
6 | nfmpt1 5134 | . . . . . . . 8 ⊢ Ⅎ𝑦(𝑦 ∈ ℋ ↦ 𝐵) | |
7 | 5, 6 | nfcxfr 2917 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 |
8 | 7, 1 | nffv 6673 | . . . . . 6 ⊢ Ⅎ𝑦(𝐹‘𝐴) |
9 | 3, 4, 8 | nfov 7186 | . . . . 5 ⊢ Ⅎ𝑦(𝑓 ·ih (𝐹‘𝐴)) |
10 | 9 | nfeq2 2936 | . . . 4 ⊢ Ⅎ𝑦((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) |
11 | 2, 10 | nfralw 3153 | . . 3 ⊢ Ⅎ𝑦∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) |
12 | oveq2 7164 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑇‘𝑓) ·ih 𝑦) = ((𝑇‘𝑓) ·ih 𝐴)) | |
13 | fveq2 6663 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
14 | 13 | oveq2d 7172 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑓 ·ih (𝐹‘𝑦)) = (𝑓 ·ih (𝐹‘𝐴))) |
15 | 12, 14 | eqeq12d 2774 | . . . 4 ⊢ (𝑦 = 𝐴 → (((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)) ↔ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)))) |
16 | 15 | ralbidv 3126 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)))) |
17 | cnlnadjlem.4 | . . . . . . 7 ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) | |
18 | riotaex 7118 | . . . . . . 7 ⊢ (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ∈ V | |
19 | 17, 18 | eqeltri 2848 | . . . . . 6 ⊢ 𝐵 ∈ V |
20 | 5 | fvmpt2 6775 | . . . . . 6 ⊢ ((𝑦 ∈ ℋ ∧ 𝐵 ∈ V) → (𝐹‘𝑦) = 𝐵) |
21 | 19, 20 | mpan2 690 | . . . . 5 ⊢ (𝑦 ∈ ℋ → (𝐹‘𝑦) = 𝐵) |
22 | fveq2 6663 | . . . . . . . . . . . . 13 ⊢ (𝑣 = 𝑓 → (𝑇‘𝑣) = (𝑇‘𝑓)) | |
23 | 22 | oveq1d 7171 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑓 → ((𝑇‘𝑣) ·ih 𝑦) = ((𝑇‘𝑓) ·ih 𝑦)) |
24 | oveq1 7163 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑓 → (𝑣 ·ih 𝑤) = (𝑓 ·ih 𝑤)) | |
25 | 23, 24 | eqeq12d 2774 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑓 → (((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))) |
26 | 25 | cbvralvw 3361 | . . . . . . . . . 10 ⊢ (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)) |
27 | 26 | a1i 11 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))) |
28 | cnlnadjlem.1 | . . . . . . . . . . . 12 ⊢ 𝑇 ∈ LinOp | |
29 | cnlnadjlem.2 | . . . . . . . . . . . 12 ⊢ 𝑇 ∈ ContOp | |
30 | cnlnadjlem.3 | . . . . . . . . . . . 12 ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) | |
31 | 28, 29, 30 | cnlnadjlem1 29963 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ ℋ → (𝐺‘𝑓) = ((𝑇‘𝑓) ·ih 𝑦)) |
32 | 31 | eqeq1d 2760 | . . . . . . . . . 10 ⊢ (𝑓 ∈ ℋ → ((𝐺‘𝑓) = (𝑓 ·ih 𝑤) ↔ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))) |
33 | 32 | ralbiia 3096 | . . . . . . . . 9 ⊢ (∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)) |
34 | 27, 33 | bitr4di 292 | . . . . . . . 8 ⊢ (𝑤 ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤))) |
35 | 34 | riotabiia 7134 | . . . . . . 7 ⊢ (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) = (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) |
36 | 17, 35 | eqtri 2781 | . . . . . 6 ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) |
37 | 28, 29, 30 | cnlnadjlem2 29964 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn)) |
38 | elin 3876 | . . . . . . . 8 ⊢ (𝐺 ∈ (LinFn ∩ ContFn) ↔ (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn)) | |
39 | 37, 38 | sylibr 237 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → 𝐺 ∈ (LinFn ∩ ContFn)) |
40 | riesz4 29960 | . . . . . . 7 ⊢ (𝐺 ∈ (LinFn ∩ ContFn) → ∃!𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) | |
41 | riotacl2 7130 | . . . . . . 7 ⊢ (∃!𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤) → (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) | |
42 | 39, 40, 41 | 3syl 18 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) |
43 | 36, 42 | eqeltrid 2856 | . . . . 5 ⊢ (𝑦 ∈ ℋ → 𝐵 ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) |
44 | 21, 43 | eqeltrd 2852 | . . . 4 ⊢ (𝑦 ∈ ℋ → (𝐹‘𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) |
45 | oveq2 7164 | . . . . . . . . 9 ⊢ (𝑤 = (𝐹‘𝑦) → (𝑓 ·ih 𝑤) = (𝑓 ·ih (𝐹‘𝑦))) | |
46 | 45 | eqeq2d 2769 | . . . . . . . 8 ⊢ (𝑤 = (𝐹‘𝑦) → (((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤) ↔ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
47 | 46 | ralbidv 3126 | . . . . . . 7 ⊢ (𝑤 = (𝐹‘𝑦) → (∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
48 | 33, 47 | syl5bb 286 | . . . . . 6 ⊢ (𝑤 = (𝐹‘𝑦) → (∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
49 | 48 | elrab 3604 | . . . . 5 ⊢ ((𝐹‘𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)} ↔ ((𝐹‘𝑦) ∈ ℋ ∧ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
50 | 49 | simprbi 500 | . . . 4 ⊢ ((𝐹‘𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)} → ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦))) |
51 | 44, 50 | syl 17 | . . 3 ⊢ (𝑦 ∈ ℋ → ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦))) |
52 | 1, 11, 16, 51 | vtoclgaf 3493 | . 2 ⊢ (𝐴 ∈ ℋ → ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴))) |
53 | fveq2 6663 | . . . . 5 ⊢ (𝑓 = 𝐶 → (𝑇‘𝑓) = (𝑇‘𝐶)) | |
54 | 53 | oveq1d 7171 | . . . 4 ⊢ (𝑓 = 𝐶 → ((𝑇‘𝑓) ·ih 𝐴) = ((𝑇‘𝐶) ·ih 𝐴)) |
55 | oveq1 7163 | . . . 4 ⊢ (𝑓 = 𝐶 → (𝑓 ·ih (𝐹‘𝐴)) = (𝐶 ·ih (𝐹‘𝐴))) | |
56 | 54, 55 | eqeq12d 2774 | . . 3 ⊢ (𝑓 = 𝐶 → (((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) ↔ ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴)))) |
57 | 56 | rspccva 3542 | . 2 ⊢ ((∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) |
58 | 52, 57 | sylan 583 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃!wreu 3072 {crab 3074 Vcvv 3409 ∩ cin 3859 ↦ cmpt 5116 ‘cfv 6340 ℩crio 7113 (class class class)co 7156 ℋchba 28815 ·ih csp 28818 ContOpccop 28842 LinOpclo 28843 ContFnccnfn 28849 LinFnclf 28850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cc 9908 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 ax-hilex 28895 ax-hfvadd 28896 ax-hvcom 28897 ax-hvass 28898 ax-hv0cl 28899 ax-hvaddid 28900 ax-hfvmul 28901 ax-hvmulid 28902 ax-hvmulass 28903 ax-hvdistr1 28904 ax-hvdistr2 28905 ax-hvmul0 28906 ax-hfi 28975 ax-his1 28978 ax-his2 28979 ax-his3 28980 ax-his4 28981 ax-hcompl 29098 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-oadd 8122 df-omul 8123 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-card 9414 df-acn 9417 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ioo 12796 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-fl 13224 df-seq 13432 df-exp 13493 df-hash 13754 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-clim 14906 df-rlim 14907 df-sum 15104 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-starv 16652 df-sca 16653 df-vsca 16654 df-ip 16655 df-tset 16656 df-ple 16657 df-ds 16659 df-unif 16660 df-hom 16661 df-cco 16662 df-rest 16768 df-topn 16769 df-0g 16787 df-gsum 16788 df-topgen 16789 df-pt 16790 df-prds 16793 df-xrs 16847 df-qtop 16852 df-imas 16853 df-xps 16855 df-mre 16929 df-mrc 16930 df-acs 16932 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-submnd 18037 df-mulg 18306 df-cntz 18528 df-cmn 18989 df-psmet 20172 df-xmet 20173 df-met 20174 df-bl 20175 df-mopn 20176 df-fbas 20177 df-fg 20178 df-cnfld 20181 df-top 21608 df-topon 21625 df-topsp 21647 df-bases 21660 df-cld 21733 df-ntr 21734 df-cls 21735 df-nei 21812 df-cn 21941 df-cnp 21942 df-lm 21943 df-t1 22028 df-haus 22029 df-tx 22276 df-hmeo 22469 df-fil 22560 df-fm 22652 df-flim 22653 df-flf 22654 df-xms 23036 df-ms 23037 df-tms 23038 df-cfil 23969 df-cau 23970 df-cmet 23971 df-grpo 28389 df-gid 28390 df-ginv 28391 df-gdiv 28392 df-ablo 28441 df-vc 28455 df-nv 28488 df-va 28491 df-ba 28492 df-sm 28493 df-0v 28494 df-vs 28495 df-nmcv 28496 df-ims 28497 df-dip 28597 df-ssp 28618 df-ph 28709 df-cbn 28759 df-hnorm 28864 df-hba 28865 df-hvsub 28867 df-hlim 28868 df-hcau 28869 df-sh 29103 df-ch 29117 df-oc 29148 df-ch0 29149 df-nmop 29735 df-cnop 29736 df-lnop 29737 df-nmfn 29741 df-nlfn 29742 df-cnfn 29743 df-lnfn 29744 |
This theorem is referenced by: cnlnadjlem6 29968 cnlnadjlem7 29969 cnlnadjlem9 29971 |
Copyright terms: Public domain | W3C validator |