HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem5 Structured version   Visualization version   GIF version

Theorem cnlnadjlem5 29763
Description: Lemma for cnlnadji 29768. 𝐹 is an adjoint of 𝑇 (later, we will show it is unique). (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
cnlnadjlem.5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
Assertion
Ref Expression
cnlnadjlem5 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹𝐴)))
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦,𝐴   𝑤,𝐹   𝑇,𝑔,𝑣,𝑤,𝑦   𝑣,𝐺,𝑤
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑔)   𝐶(𝑦,𝑤,𝑣,𝑔)   𝐹(𝑦,𝑣,𝑔)   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem5
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2981 . . 3 𝑦𝐴
2 nfcv 2981 . . . 4 𝑦
3 nfcv 2981 . . . . . 6 𝑦𝑓
4 nfcv 2981 . . . . . 6 𝑦 ·ih
5 cnlnadjlem.5 . . . . . . . 8 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
6 nfmpt1 5160 . . . . . . . 8 𝑦(𝑦 ∈ ℋ ↦ 𝐵)
75, 6nfcxfr 2979 . . . . . . 7 𝑦𝐹
87, 1nffv 6676 . . . . . 6 𝑦(𝐹𝐴)
93, 4, 8nfov 7181 . . . . 5 𝑦(𝑓 ·ih (𝐹𝐴))
109nfeq2 2999 . . . 4 𝑦((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴))
112, 10nfral 3230 . . 3 𝑦𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴))
12 oveq2 7159 . . . . 5 (𝑦 = 𝐴 → ((𝑇𝑓) ·ih 𝑦) = ((𝑇𝑓) ·ih 𝐴))
13 fveq2 6666 . . . . . 6 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
1413oveq2d 7167 . . . . 5 (𝑦 = 𝐴 → (𝑓 ·ih (𝐹𝑦)) = (𝑓 ·ih (𝐹𝐴)))
1512, 14eqeq12d 2840 . . . 4 (𝑦 = 𝐴 → (((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦)) ↔ ((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴))))
1615ralbidv 3201 . . 3 (𝑦 = 𝐴 → (∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦)) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴))))
17 cnlnadjlem.4 . . . . . . 7 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
18 riotaex 7113 . . . . . . 7 (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ∈ V
1917, 18eqeltri 2913 . . . . . 6 𝐵 ∈ V
205fvmpt2 6774 . . . . . 6 ((𝑦 ∈ ℋ ∧ 𝐵 ∈ V) → (𝐹𝑦) = 𝐵)
2119, 20mpan2 687 . . . . 5 (𝑦 ∈ ℋ → (𝐹𝑦) = 𝐵)
22 fveq2 6666 . . . . . . . . . . . . 13 (𝑣 = 𝑓 → (𝑇𝑣) = (𝑇𝑓))
2322oveq1d 7166 . . . . . . . . . . . 12 (𝑣 = 𝑓 → ((𝑇𝑣) ·ih 𝑦) = ((𝑇𝑓) ·ih 𝑦))
24 oveq1 7158 . . . . . . . . . . . 12 (𝑣 = 𝑓 → (𝑣 ·ih 𝑤) = (𝑓 ·ih 𝑤))
2523, 24eqeq12d 2840 . . . . . . . . . . 11 (𝑣 = 𝑓 → (((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)))
2625cbvralv 3457 . . . . . . . . . 10 (∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))
2726a1i 11 . . . . . . . . 9 (𝑤 ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)))
28 cnlnadjlem.1 . . . . . . . . . . . 12 𝑇 ∈ LinOp
29 cnlnadjlem.2 . . . . . . . . . . . 12 𝑇 ∈ ContOp
30 cnlnadjlem.3 . . . . . . . . . . . 12 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
3128, 29, 30cnlnadjlem1 29759 . . . . . . . . . . 11 (𝑓 ∈ ℋ → (𝐺𝑓) = ((𝑇𝑓) ·ih 𝑦))
3231eqeq1d 2826 . . . . . . . . . 10 (𝑓 ∈ ℋ → ((𝐺𝑓) = (𝑓 ·ih 𝑤) ↔ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)))
3332ralbiia 3168 . . . . . . . . 9 (∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))
3427, 33syl6bbr 290 . . . . . . . 8 (𝑤 ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)))
3534riotabiia 7129 . . . . . . 7 (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) = (𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤))
3617, 35eqtri 2848 . . . . . 6 𝐵 = (𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤))
3728, 29, 30cnlnadjlem2 29760 . . . . . . . 8 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
38 elin 4172 . . . . . . . 8 (𝐺 ∈ (LinFn ∩ ContFn) ↔ (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
3937, 38sylibr 235 . . . . . . 7 (𝑦 ∈ ℋ → 𝐺 ∈ (LinFn ∩ ContFn))
40 riesz4 29756 . . . . . . 7 (𝐺 ∈ (LinFn ∩ ContFn) → ∃!𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤))
41 riotacl2 7125 . . . . . . 7 (∃!𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤) → (𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)})
4239, 40, 413syl 18 . . . . . 6 (𝑦 ∈ ℋ → (𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)})
4336, 42eqeltrid 2921 . . . . 5 (𝑦 ∈ ℋ → 𝐵 ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)})
4421, 43eqeltrd 2917 . . . 4 (𝑦 ∈ ℋ → (𝐹𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)})
45 oveq2 7159 . . . . . . . . 9 (𝑤 = (𝐹𝑦) → (𝑓 ·ih 𝑤) = (𝑓 ·ih (𝐹𝑦)))
4645eqeq2d 2835 . . . . . . . 8 (𝑤 = (𝐹𝑦) → (((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤) ↔ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦))))
4746ralbidv 3201 . . . . . . 7 (𝑤 = (𝐹𝑦) → (∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦))))
4833, 47syl5bb 284 . . . . . 6 (𝑤 = (𝐹𝑦) → (∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦))))
4948elrab 3683 . . . . 5 ((𝐹𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)} ↔ ((𝐹𝑦) ∈ ℋ ∧ ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦))))
5049simprbi 497 . . . 4 ((𝐹𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺𝑓) = (𝑓 ·ih 𝑤)} → ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦)))
5144, 50syl 17 . . 3 (𝑦 ∈ ℋ → ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹𝑦)))
521, 11, 16, 51vtoclgaf 3577 . 2 (𝐴 ∈ ℋ → ∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴)))
53 fveq2 6666 . . . . 5 (𝑓 = 𝐶 → (𝑇𝑓) = (𝑇𝐶))
5453oveq1d 7166 . . . 4 (𝑓 = 𝐶 → ((𝑇𝑓) ·ih 𝐴) = ((𝑇𝐶) ·ih 𝐴))
55 oveq1 7158 . . . 4 (𝑓 = 𝐶 → (𝑓 ·ih (𝐹𝐴)) = (𝐶 ·ih (𝐹𝐴)))
5654, 55eqeq12d 2840 . . 3 (𝑓 = 𝐶 → (((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴)) ↔ ((𝑇𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹𝐴))))
5756rspccva 3625 . 2 ((∀𝑓 ∈ ℋ ((𝑇𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹𝐴)) ∧ 𝐶 ∈ ℋ) → ((𝑇𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹𝐴)))
5852, 57sylan 580 1 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2106  wral 3142  ∃!wreu 3144  {crab 3146  Vcvv 3499  cin 3938  cmpt 5142  cfv 6351  crio 7108  (class class class)co 7151  chba 28611   ·ih csp 28614  ContOpccop 28638  LinOpclo 28639  ContFnccnfn 28645  LinFnclf 28646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609  ax-hilex 28691  ax-hfvadd 28692  ax-hvcom 28693  ax-hvass 28694  ax-hv0cl 28695  ax-hvaddid 28696  ax-hfvmul 28697  ax-hvmulid 28698  ax-hvmulass 28699  ax-hvdistr1 28700  ax-hvdistr2 28701  ax-hvmul0 28702  ax-hfi 28771  ax-his1 28774  ax-his2 28775  ax-his3 28776  ax-his4 28777  ax-hcompl 28894
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-fbas 20458  df-fg 20459  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-nei 21622  df-cn 21751  df-cnp 21752  df-lm 21753  df-t1 21838  df-haus 21839  df-tx 22086  df-hmeo 22279  df-fil 22370  df-fm 22462  df-flim 22463  df-flf 22464  df-xms 22845  df-ms 22846  df-tms 22847  df-cfil 23773  df-cau 23774  df-cmet 23775  df-grpo 28185  df-gid 28186  df-ginv 28187  df-gdiv 28188  df-ablo 28237  df-vc 28251  df-nv 28284  df-va 28287  df-ba 28288  df-sm 28289  df-0v 28290  df-vs 28291  df-nmcv 28292  df-ims 28293  df-dip 28393  df-ssp 28414  df-ph 28505  df-cbn 28555  df-hnorm 28660  df-hba 28661  df-hvsub 28663  df-hlim 28664  df-hcau 28665  df-sh 28899  df-ch 28913  df-oc 28944  df-ch0 28945  df-nmop 29531  df-cnop 29532  df-lnop 29533  df-nmfn 29537  df-nlfn 29538  df-cnfn 29539  df-lnfn 29540
This theorem is referenced by:  cnlnadjlem6  29764  cnlnadjlem7  29765  cnlnadjlem9  29767
  Copyright terms: Public domain W3C validator