| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cnlnadjlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for cnlnadji 32024. 𝐹 is an adjoint of 𝑇 (later, we will show it is unique). (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp |
| cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp |
| cnlnadjlem.3 | ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) |
| cnlnadjlem.4 | ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) |
| cnlnadjlem.5 | ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) |
| Ref | Expression |
|---|---|
| cnlnadjlem5 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑦 ℋ | |
| 3 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑦𝑓 | |
| 4 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑦 ·ih | |
| 5 | cnlnadjlem.5 | . . . . . . . 8 ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) | |
| 6 | nfmpt1 5191 | . . . . . . . 8 ⊢ Ⅎ𝑦(𝑦 ∈ ℋ ↦ 𝐵) | |
| 7 | 5, 6 | nfcxfr 2889 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 |
| 8 | 7, 1 | nffv 6832 | . . . . . 6 ⊢ Ⅎ𝑦(𝐹‘𝐴) |
| 9 | 3, 4, 8 | nfov 7379 | . . . . 5 ⊢ Ⅎ𝑦(𝑓 ·ih (𝐹‘𝐴)) |
| 10 | 9 | nfeq2 2909 | . . . 4 ⊢ Ⅎ𝑦((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) |
| 11 | 2, 10 | nfralw 3276 | . . 3 ⊢ Ⅎ𝑦∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) |
| 12 | oveq2 7357 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑇‘𝑓) ·ih 𝑦) = ((𝑇‘𝑓) ·ih 𝐴)) | |
| 13 | fveq2 6822 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
| 14 | 13 | oveq2d 7365 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑓 ·ih (𝐹‘𝑦)) = (𝑓 ·ih (𝐹‘𝐴))) |
| 15 | 12, 14 | eqeq12d 2745 | . . . 4 ⊢ (𝑦 = 𝐴 → (((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)) ↔ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)))) |
| 16 | 15 | ralbidv 3152 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)))) |
| 17 | cnlnadjlem.4 | . . . . . . 7 ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) | |
| 18 | riotaex 7310 | . . . . . . 7 ⊢ (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ∈ V | |
| 19 | 17, 18 | eqeltri 2824 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 20 | 5 | fvmpt2 6941 | . . . . . 6 ⊢ ((𝑦 ∈ ℋ ∧ 𝐵 ∈ V) → (𝐹‘𝑦) = 𝐵) |
| 21 | 19, 20 | mpan2 691 | . . . . 5 ⊢ (𝑦 ∈ ℋ → (𝐹‘𝑦) = 𝐵) |
| 22 | fveq2 6822 | . . . . . . . . . . . . 13 ⊢ (𝑣 = 𝑓 → (𝑇‘𝑣) = (𝑇‘𝑓)) | |
| 23 | 22 | oveq1d 7364 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑓 → ((𝑇‘𝑣) ·ih 𝑦) = ((𝑇‘𝑓) ·ih 𝑦)) |
| 24 | oveq1 7356 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑓 → (𝑣 ·ih 𝑤) = (𝑓 ·ih 𝑤)) | |
| 25 | 23, 24 | eqeq12d 2745 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑓 → (((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))) |
| 26 | 25 | cbvralvw 3207 | . . . . . . . . . 10 ⊢ (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)) |
| 27 | 26 | a1i 11 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))) |
| 28 | cnlnadjlem.1 | . . . . . . . . . . . 12 ⊢ 𝑇 ∈ LinOp | |
| 29 | cnlnadjlem.2 | . . . . . . . . . . . 12 ⊢ 𝑇 ∈ ContOp | |
| 30 | cnlnadjlem.3 | . . . . . . . . . . . 12 ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) | |
| 31 | 28, 29, 30 | cnlnadjlem1 32015 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ ℋ → (𝐺‘𝑓) = ((𝑇‘𝑓) ·ih 𝑦)) |
| 32 | 31 | eqeq1d 2731 | . . . . . . . . . 10 ⊢ (𝑓 ∈ ℋ → ((𝐺‘𝑓) = (𝑓 ·ih 𝑤) ↔ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤))) |
| 33 | 32 | ralbiia 3073 | . . . . . . . . 9 ⊢ (∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤)) |
| 34 | 27, 33 | bitr4di 289 | . . . . . . . 8 ⊢ (𝑤 ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤))) |
| 35 | 34 | riotabiia 7326 | . . . . . . 7 ⊢ (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) = (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) |
| 36 | 17, 35 | eqtri 2752 | . . . . . 6 ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) |
| 37 | 28, 29, 30 | cnlnadjlem2 32016 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn)) |
| 38 | elin 3919 | . . . . . . . 8 ⊢ (𝐺 ∈ (LinFn ∩ ContFn) ↔ (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn)) | |
| 39 | 37, 38 | sylibr 234 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → 𝐺 ∈ (LinFn ∩ ContFn)) |
| 40 | riesz4 32012 | . . . . . . 7 ⊢ (𝐺 ∈ (LinFn ∩ ContFn) → ∃!𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) | |
| 41 | riotacl2 7322 | . . . . . . 7 ⊢ (∃!𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤) → (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) | |
| 42 | 39, 40, 41 | 3syl 18 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (℩𝑤 ∈ ℋ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) |
| 43 | 36, 42 | eqeltrid 2832 | . . . . 5 ⊢ (𝑦 ∈ ℋ → 𝐵 ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) |
| 44 | 21, 43 | eqeltrd 2828 | . . . 4 ⊢ (𝑦 ∈ ℋ → (𝐹‘𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)}) |
| 45 | oveq2 7357 | . . . . . . . . 9 ⊢ (𝑤 = (𝐹‘𝑦) → (𝑓 ·ih 𝑤) = (𝑓 ·ih (𝐹‘𝑦))) | |
| 46 | 45 | eqeq2d 2740 | . . . . . . . 8 ⊢ (𝑤 = (𝐹‘𝑦) → (((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤) ↔ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
| 47 | 46 | ralbidv 3152 | . . . . . . 7 ⊢ (𝑤 = (𝐹‘𝑦) → (∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
| 48 | 33, 47 | bitrid 283 | . . . . . 6 ⊢ (𝑤 = (𝐹‘𝑦) → (∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤) ↔ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
| 49 | 48 | elrab 3648 | . . . . 5 ⊢ ((𝐹‘𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)} ↔ ((𝐹‘𝑦) ∈ ℋ ∧ ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦)))) |
| 50 | 49 | simprbi 496 | . . . 4 ⊢ ((𝐹‘𝑦) ∈ {𝑤 ∈ ℋ ∣ ∀𝑓 ∈ ℋ (𝐺‘𝑓) = (𝑓 ·ih 𝑤)} → ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦))) |
| 51 | 44, 50 | syl 17 | . . 3 ⊢ (𝑦 ∈ ℋ → ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝑦) = (𝑓 ·ih (𝐹‘𝑦))) |
| 52 | 1, 11, 16, 51 | vtoclgaf 3531 | . 2 ⊢ (𝐴 ∈ ℋ → ∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴))) |
| 53 | fveq2 6822 | . . . . 5 ⊢ (𝑓 = 𝐶 → (𝑇‘𝑓) = (𝑇‘𝐶)) | |
| 54 | 53 | oveq1d 7364 | . . . 4 ⊢ (𝑓 = 𝐶 → ((𝑇‘𝑓) ·ih 𝐴) = ((𝑇‘𝐶) ·ih 𝐴)) |
| 55 | oveq1 7356 | . . . 4 ⊢ (𝑓 = 𝐶 → (𝑓 ·ih (𝐹‘𝐴)) = (𝐶 ·ih (𝐹‘𝐴))) | |
| 56 | 54, 55 | eqeq12d 2745 | . . 3 ⊢ (𝑓 = 𝐶 → (((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) ↔ ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴)))) |
| 57 | 56 | rspccva 3576 | . 2 ⊢ ((∀𝑓 ∈ ℋ ((𝑇‘𝑓) ·ih 𝐴) = (𝑓 ·ih (𝐹‘𝐴)) ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) |
| 58 | 52, 57 | sylan 580 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3341 {crab 3394 Vcvv 3436 ∩ cin 3902 ↦ cmpt 5173 ‘cfv 6482 ℩crio 7305 (class class class)co 7349 ℋchba 30867 ·ih csp 30870 ContOpccop 30894 LinOpclo 30895 ContFnccnfn 30901 LinFnclf 30902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 ax-hilex 30947 ax-hfvadd 30948 ax-hvcom 30949 ax-hvass 30950 ax-hv0cl 30951 ax-hvaddid 30952 ax-hfvmul 30953 ax-hvmulid 30954 ax-hvmulass 30955 ax-hvdistr1 30956 ax-hvdistr2 30957 ax-hvmul0 30958 ax-hfi 31027 ax-his1 31030 ax-his2 31031 ax-his3 31032 ax-his4 31033 ax-hcompl 31150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-cn 23112 df-cnp 23113 df-lm 23114 df-t1 23199 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cfil 25153 df-cau 25154 df-cmet 25155 df-grpo 30441 df-gid 30442 df-ginv 30443 df-gdiv 30444 df-ablo 30493 df-vc 30507 df-nv 30540 df-va 30543 df-ba 30544 df-sm 30545 df-0v 30546 df-vs 30547 df-nmcv 30548 df-ims 30549 df-dip 30649 df-ssp 30670 df-ph 30761 df-cbn 30811 df-hnorm 30916 df-hba 30917 df-hvsub 30919 df-hlim 30920 df-hcau 30921 df-sh 31155 df-ch 31169 df-oc 31200 df-ch0 31201 df-nmop 31787 df-cnop 31788 df-lnop 31789 df-nmfn 31793 df-nlfn 31794 df-cnfn 31795 df-lnfn 31796 |
| This theorem is referenced by: cnlnadjlem6 32020 cnlnadjlem7 32021 cnlnadjlem9 32023 |
| Copyright terms: Public domain | W3C validator |