Step | Hyp | Ref
| Expression |
1 | | glbfval.k |
. 2
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
2 | | elex 3450 |
. 2
⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) |
3 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) |
4 | | glbfval.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
5 | 3, 4 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) |
6 | 5 | pweqd 4552 |
. . . . . 6
⊢ (𝑝 = 𝐾 → 𝒫 (Base‘𝑝) = 𝒫 𝐵) |
7 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾)) |
8 | | glbfval.l |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝐾) |
9 | 7, 8 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝑝 = 𝐾 → (le‘𝑝) = ≤ ) |
10 | 9 | breqd 5085 |
. . . . . . . . 9
⊢ (𝑝 = 𝐾 → (𝑥(le‘𝑝)𝑦 ↔ 𝑥 ≤ 𝑦)) |
11 | 10 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ↔ ∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦)) |
12 | 9 | breqd 5085 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝐾 → (𝑧(le‘𝑝)𝑦 ↔ 𝑧 ≤ 𝑦)) |
13 | 12 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑝 = 𝐾 → (∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 ↔ ∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦)) |
14 | 9 | breqd 5085 |
. . . . . . . . . 10
⊢ (𝑝 = 𝐾 → (𝑧(le‘𝑝)𝑥 ↔ 𝑧 ≤ 𝑥)) |
15 | 13, 14 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑝 = 𝐾 → ((∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥) ↔ (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
16 | 5, 15 | raleqbidv 3336 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥) ↔ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
17 | 11, 16 | anbi12d 631 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → ((∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)) ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
18 | 5, 17 | riotaeqbidv 7235 |
. . . . . 6
⊢ (𝑝 = 𝐾 → (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
19 | 6, 18 | mpteq12dv 5165 |
. . . . 5
⊢ (𝑝 = 𝐾 → (𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))) |
20 | 17 | reubidv 3323 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)) ↔ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
21 | | reueq1 3344 |
. . . . . . . 8
⊢
((Base‘𝑝) =
𝐵 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
22 | 5, 21 | syl 17 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
23 | 20, 22 | bitrd 278 |
. . . . . 6
⊢ (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)) ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
24 | 23 | abbidv 2807 |
. . . . 5
⊢ (𝑝 = 𝐾 → {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))} = {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))}) |
25 | 19, 24 | reseq12d 5892 |
. . . 4
⊢ (𝑝 = 𝐾 → ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))})) |
26 | | df-glb 18065 |
. . . 4
⊢ glb =
(𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫
(Base‘𝑝) ↦
(℩𝑥 ∈
(Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))})) |
27 | 4 | fvexi 6788 |
. . . . . . 7
⊢ 𝐵 ∈ V |
28 | 27 | pwex 5303 |
. . . . . 6
⊢ 𝒫
𝐵 ∈ V |
29 | 28 | mptex 7099 |
. . . . 5
⊢ (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ∈ V |
30 | 29 | resex 5939 |
. . . 4
⊢ ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))}) ∈ V |
31 | 25, 26, 30 | fvmpt 6875 |
. . 3
⊢ (𝐾 ∈ V →
(glb‘𝐾) = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))})) |
32 | | glbfval.g |
. . 3
⊢ 𝐺 = (glb‘𝐾) |
33 | | glbfval.p |
. . . . . . 7
⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
34 | 33 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 → (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
35 | 34 | riotabiia 7253 |
. . . . 5
⊢
(℩𝑥
∈ 𝐵 𝜓) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
36 | 35 | mpteq2i 5179 |
. . . 4
⊢ (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
37 | 33 | reubii 3325 |
. . . . 5
⊢
(∃!𝑥 ∈
𝐵 𝜓 ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
38 | 37 | abbii 2808 |
. . . 4
⊢ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} = {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))} |
39 | 36, 38 | reseq12i 5889 |
. . 3
⊢ ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))}) |
40 | 31, 32, 39 | 3eqtr4g 2803 |
. 2
⊢ (𝐾 ∈ V → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
41 | 1, 2, 40 | 3syl 18 |
1
⊢ (𝜑 → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |