MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbfval Structured version   Visualization version   GIF version

Theorem glbfval 17668
Description: Value of the greatest lower function of a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.)
Hypotheses
Ref Expression
glbfval.b 𝐵 = (Base‘𝐾)
glbfval.l = (le‘𝐾)
glbfval.g 𝐺 = (glb‘𝐾)
glbfval.p (𝜓 ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
glbfval.k (𝜑𝐾𝑉)
Assertion
Ref Expression
glbfval (𝜑𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
Distinct variable groups:   𝑥,𝑠,𝑧,𝐵   𝑦,𝑠,𝐾,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑠)   𝜓(𝑥,𝑦,𝑧,𝑠)   𝐵(𝑦)   𝐺(𝑥,𝑦,𝑧,𝑠)   (𝑥,𝑦,𝑧,𝑠)   𝑉(𝑥,𝑦,𝑧,𝑠)

Proof of Theorem glbfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 glbfval.k . 2 (𝜑𝐾𝑉)
2 elex 3429 . 2 (𝐾𝑉𝐾 ∈ V)
3 fveq2 6659 . . . . . . . 8 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 glbfval.b . . . . . . . 8 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2812 . . . . . . 7 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
65pweqd 4514 . . . . . 6 (𝑝 = 𝐾 → 𝒫 (Base‘𝑝) = 𝒫 𝐵)
7 fveq2 6659 . . . . . . . . . . 11 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
8 glbfval.l . . . . . . . . . . 11 = (le‘𝐾)
97, 8eqtr4di 2812 . . . . . . . . . 10 (𝑝 = 𝐾 → (le‘𝑝) = )
109breqd 5044 . . . . . . . . 9 (𝑝 = 𝐾 → (𝑥(le‘𝑝)𝑦𝑥 𝑦))
1110ralbidv 3127 . . . . . . . 8 (𝑝 = 𝐾 → (∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ↔ ∀𝑦𝑠 𝑥 𝑦))
129breqd 5044 . . . . . . . . . . 11 (𝑝 = 𝐾 → (𝑧(le‘𝑝)𝑦𝑧 𝑦))
1312ralbidv 3127 . . . . . . . . . 10 (𝑝 = 𝐾 → (∀𝑦𝑠 𝑧(le‘𝑝)𝑦 ↔ ∀𝑦𝑠 𝑧 𝑦))
149breqd 5044 . . . . . . . . . 10 (𝑝 = 𝐾 → (𝑧(le‘𝑝)𝑥𝑧 𝑥))
1513, 14imbi12d 349 . . . . . . . . 9 (𝑝 = 𝐾 → ((∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥) ↔ (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
165, 15raleqbidv 3320 . . . . . . . 8 (𝑝 = 𝐾 → (∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
1711, 16anbi12d 634 . . . . . . 7 (𝑝 = 𝐾 → ((∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)) ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
185, 17riotaeqbidv 7112 . . . . . 6 (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥))) = (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
196, 18mpteq12dv 5118 . . . . 5 (𝑝 = 𝐾 → (𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))))
2017reubidv 3308 . . . . . . 7 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)) ↔ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
21 reueq1 3326 . . . . . . . 8 ((Base‘𝑝) = 𝐵 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
225, 21syl 17 . . . . . . 7 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
2320, 22bitrd 282 . . . . . 6 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
2423abbidv 2823 . . . . 5 (𝑝 = 𝐾 → {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥))} = {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})
2519, 24reseq12d 5825 . . . 4 (𝑝 = 𝐾 → ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥))}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}))
26 df-glb 17652 . . . 4 glb = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥))}))
274fvexi 6673 . . . . . . 7 𝐵 ∈ V
2827pwex 5250 . . . . . 6 𝒫 𝐵 ∈ V
2928mptex 6978 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ∈ V
3029resex 5872 . . . 4 ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}) ∈ V
3125, 26, 30fvmpt 6760 . . 3 (𝐾 ∈ V → (glb‘𝐾) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}))
32 glbfval.g . . 3 𝐺 = (glb‘𝐾)
33 glbfval.p . . . . . . 7 (𝜓 ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
3433a1i 11 . . . . . 6 (𝑥𝐵 → (𝜓 ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
3534riotabiia 7129 . . . . 5 (𝑥𝐵 𝜓) = (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
3635mpteq2i 5125 . . . 4 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
3733reubii 3310 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
3837abbii 2824 . . . 4 {𝑠 ∣ ∃!𝑥𝐵 𝜓} = {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}
3936, 38reseq12i 5822 . . 3 ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})
4031, 32, 393eqtr4g 2819 . 2 (𝐾 ∈ V → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
411, 2, 403syl 18 1 (𝜑𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  {cab 2736  wral 3071  ∃!wreu 3073  Vcvv 3410  𝒫 cpw 4495   class class class wbr 5033  cmpt 5113  cres 5527  cfv 6336  crio 7108  Basecbs 16542  lecple 16631  glbcglb 17620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-glb 17652
This theorem is referenced by:  glbdm  17669  glbfun  17670  glbval  17674  meet0  17814  oduglb  17816  odulub  17818
  Copyright terms: Public domain W3C validator