| Step | Hyp | Ref
| Expression |
| 1 | | glbfval.k |
. 2
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| 2 | | elex 3501 |
. 2
⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) |
| 3 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) |
| 4 | | glbfval.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
| 5 | 3, 4 | eqtr4di 2795 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) |
| 6 | 5 | pweqd 4617 |
. . . . . 6
⊢ (𝑝 = 𝐾 → 𝒫 (Base‘𝑝) = 𝒫 𝐵) |
| 7 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾)) |
| 8 | | glbfval.l |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝐾) |
| 9 | 7, 8 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (𝑝 = 𝐾 → (le‘𝑝) = ≤ ) |
| 10 | 9 | breqd 5154 |
. . . . . . . . 9
⊢ (𝑝 = 𝐾 → (𝑥(le‘𝑝)𝑦 ↔ 𝑥 ≤ 𝑦)) |
| 11 | 10 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ↔ ∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦)) |
| 12 | 9 | breqd 5154 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝐾 → (𝑧(le‘𝑝)𝑦 ↔ 𝑧 ≤ 𝑦)) |
| 13 | 12 | ralbidv 3178 |
. . . . . . . . . 10
⊢ (𝑝 = 𝐾 → (∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 ↔ ∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦)) |
| 14 | 9 | breqd 5154 |
. . . . . . . . . 10
⊢ (𝑝 = 𝐾 → (𝑧(le‘𝑝)𝑥 ↔ 𝑧 ≤ 𝑥)) |
| 15 | 13, 14 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑝 = 𝐾 → ((∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥) ↔ (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 16 | 5, 15 | raleqbidv 3346 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥) ↔ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 17 | 11, 16 | anbi12d 632 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → ((∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)) ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 18 | 5, 17 | riotaeqbidv 7391 |
. . . . . 6
⊢ (𝑝 = 𝐾 → (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 19 | 6, 18 | mpteq12dv 5233 |
. . . . 5
⊢ (𝑝 = 𝐾 → (𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))) |
| 20 | 17 | reubidv 3398 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)) ↔ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 21 | | reueq1 3417 |
. . . . . . . 8
⊢
((Base‘𝑝) =
𝐵 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 22 | 5, 21 | syl 17 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 23 | 20, 22 | bitrd 279 |
. . . . . 6
⊢ (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)) ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 24 | 23 | abbidv 2808 |
. . . . 5
⊢ (𝑝 = 𝐾 → {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))} = {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))}) |
| 25 | 19, 24 | reseq12d 5998 |
. . . 4
⊢ (𝑝 = 𝐾 → ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))})) |
| 26 | | df-glb 18392 |
. . . 4
⊢ glb =
(𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫
(Base‘𝑝) ↦
(℩𝑥 ∈
(Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))})) |
| 27 | 4 | fvexi 6920 |
. . . . . . 7
⊢ 𝐵 ∈ V |
| 28 | 27 | pwex 5380 |
. . . . . 6
⊢ 𝒫
𝐵 ∈ V |
| 29 | 28 | mptex 7243 |
. . . . 5
⊢ (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ∈ V |
| 30 | 29 | resex 6047 |
. . . 4
⊢ ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))}) ∈ V |
| 31 | 25, 26, 30 | fvmpt 7016 |
. . 3
⊢ (𝐾 ∈ V →
(glb‘𝐾) = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))})) |
| 32 | | glbfval.g |
. . 3
⊢ 𝐺 = (glb‘𝐾) |
| 33 | | glbfval.p |
. . . . . . 7
⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 34 | 33 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 → (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 35 | 34 | riotabiia 7408 |
. . . . 5
⊢
(℩𝑥
∈ 𝐵 𝜓) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 36 | 35 | mpteq2i 5247 |
. . . 4
⊢ (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 37 | 33 | reubii 3389 |
. . . . 5
⊢
(∃!𝑥 ∈
𝐵 𝜓 ↔ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 38 | 37 | abbii 2809 |
. . . 4
⊢ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} = {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))} |
| 39 | 36, 38 | reseq12i 5995 |
. . 3
⊢ ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))}) |
| 40 | 31, 32, 39 | 3eqtr4g 2802 |
. 2
⊢ (𝐾 ∈ V → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
| 41 | 1, 2, 40 | 3syl 18 |
1
⊢ (𝜑 → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |